\(\int \frac {(b d+2 c d x)^7}{(a+b x+c x^2)^3} \, dx\) [72]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 24, antiderivative size = 97 \[ \int \frac {(b d+2 c d x)^7}{\left (a+b x+c x^2\right )^3} \, dx=48 c^2 d^7 (b+2 c x)^2-\frac {d^7 (b+2 c x)^6}{2 \left (a+b x+c x^2\right )^2}-\frac {6 c d^7 (b+2 c x)^4}{a+b x+c x^2}+48 c^2 \left (b^2-4 a c\right ) d^7 \log \left (a+b x+c x^2\right ) \] Output:

48*c^2*d^7*(2*c*x+b)^2-1/2*d^7*(2*c*x+b)^6/(c*x^2+b*x+a)^2-6*c*d^7*(2*c*x+ 
b)^4/(c*x^2+b*x+a)+48*c^2*(-4*a*c+b^2)*d^7*ln(c*x^2+b*x+a)
 

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.95 \[ \int \frac {(b d+2 c d x)^7}{\left (a+b x+c x^2\right )^3} \, dx=d^7 \left (64 b c^3 x+64 c^4 x^2-\frac {\left (b^2-4 a c\right )^3}{2 (a+x (b+c x))^2}-\frac {12 c \left (b^2-4 a c\right )^2}{a+x (b+c x)}+48 c^2 \left (b^2-4 a c\right ) \log (a+x (b+c x))\right ) \] Input:

Integrate[(b*d + 2*c*d*x)^7/(a + b*x + c*x^2)^3,x]
 

Output:

d^7*(64*b*c^3*x + 64*c^4*x^2 - (b^2 - 4*a*c)^3/(2*(a + x*(b + c*x))^2) - ( 
12*c*(b^2 - 4*a*c)^2)/(a + x*(b + c*x)) + 48*c^2*(b^2 - 4*a*c)*Log[a + x*( 
b + c*x)])
 

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.92, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {1110, 27, 1110, 1116, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(b d+2 c d x)^7}{\left (a+b x+c x^2\right )^3} \, dx\)

\(\Big \downarrow \) 1110

\(\displaystyle 6 c d^2 \int \frac {d^5 (b+2 c x)^5}{\left (c x^2+b x+a\right )^2}dx-\frac {d^7 (b+2 c x)^6}{2 \left (a+b x+c x^2\right )^2}\)

\(\Big \downarrow \) 27

\(\displaystyle 6 c d^7 \int \frac {(b+2 c x)^5}{\left (c x^2+b x+a\right )^2}dx-\frac {d^7 (b+2 c x)^6}{2 \left (a+b x+c x^2\right )^2}\)

\(\Big \downarrow \) 1110

\(\displaystyle 6 c d^7 \left (8 c \int \frac {(b+2 c x)^3}{c x^2+b x+a}dx-\frac {(b+2 c x)^4}{a+b x+c x^2}\right )-\frac {d^7 (b+2 c x)^6}{2 \left (a+b x+c x^2\right )^2}\)

\(\Big \downarrow \) 1116

\(\displaystyle 6 c d^7 \left (8 c \left (\left (b^2-4 a c\right ) \int \frac {b+2 c x}{c x^2+b x+a}dx+(b+2 c x)^2\right )-\frac {(b+2 c x)^4}{a+b x+c x^2}\right )-\frac {d^7 (b+2 c x)^6}{2 \left (a+b x+c x^2\right )^2}\)

\(\Big \downarrow \) 1103

\(\displaystyle 6 c d^7 \left (8 c \left (\left (b^2-4 a c\right ) \log \left (a+b x+c x^2\right )+(b+2 c x)^2\right )-\frac {(b+2 c x)^4}{a+b x+c x^2}\right )-\frac {d^7 (b+2 c x)^6}{2 \left (a+b x+c x^2\right )^2}\)

Input:

Int[(b*d + 2*c*d*x)^7/(a + b*x + c*x^2)^3,x]
 

Output:

-1/2*(d^7*(b + 2*c*x)^6)/(a + b*x + c*x^2)^2 + 6*c*d^7*(-((b + 2*c*x)^4/(a 
 + b*x + c*x^2)) + 8*c*((b + 2*c*x)^2 + (b^2 - 4*a*c)*Log[a + b*x + c*x^2] 
))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1110
Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Sy 
mbol] :> Simp[d*(d + e*x)^(m - 1)*((a + b*x + c*x^2)^(p + 1)/(b*(p + 1))), 
x] - Simp[d*e*((m - 1)/(b*(p + 1)))   Int[(d + e*x)^(m - 2)*(a + b*x + c*x^ 
2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0] && N 
eQ[m + 2*p + 3, 0] && LtQ[p, -1] && GtQ[m, 1] && IntegerQ[2*p]
 

rule 1116
Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_S 
ymbol] :> Simp[2*d*(d + e*x)^(m - 1)*((a + b*x + c*x^2)^(p + 1)/(b*(m + 2*p 
 + 1))), x] + Simp[d^2*(m - 1)*((b^2 - 4*a*c)/(b^2*(m + 2*p + 1)))   Int[(d 
 + e*x)^(m - 2)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] 
 && EqQ[2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && GtQ[m, 1] && NeQ[m + 2*p 
+ 1, 0] && (IntegerQ[2*p] || (IntegerQ[m] && RationalQ[p]) || OddQ[m])
 
Maple [A] (verified)

Time = 0.89 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.48

method result size
default \(d^{7} \left (64 c^{4} x^{2}+64 b \,c^{3} x -\frac {12 c^{2} \left (16 a^{2} c^{2}-8 c a \,b^{2}+b^{4}\right ) x^{2}+12 b c \left (16 a^{2} c^{2}-8 c a \,b^{2}+b^{4}\right ) x +160 a^{3} c^{3}-72 a^{2} b^{2} c^{2}+6 a \,b^{4} c +\frac {b^{6}}{2}}{\left (c \,x^{2}+b x +a \right )^{2}}-48 c^{2} \left (4 a c -b^{2}\right ) \ln \left (c \,x^{2}+b x +a \right )\right )\) \(144\)
risch \(64 c^{4} d^{7} x^{2}+64 b \,c^{3} d^{7} x +\frac {-12 c^{2} d^{7} \left (16 a^{2} c^{2}-8 c a \,b^{2}+b^{4}\right ) x^{2}-12 b c \,d^{7} \left (16 a^{2} c^{2}-8 c a \,b^{2}+b^{4}\right ) x -\frac {d^{7} \left (320 a^{3} c^{3}-144 a^{2} b^{2} c^{2}+12 a \,b^{4} c +b^{6}\right )}{2}}{\left (c \,x^{2}+b x +a \right )^{2}}-192 \ln \left (c \,x^{2}+b x +a \right ) a \,c^{3} d^{7}+48 \ln \left (c \,x^{2}+b x +a \right ) b^{2} c^{2} d^{7}\) \(171\)
norman \(\frac {-\frac {576 a^{3} c^{5} d^{7}+240 a^{2} b^{2} c^{4} d^{7}+12 a \,b^{4} c^{3} d^{7}+b^{6} c^{2} d^{7}}{2 c^{2}}+64 d^{7} c^{6} x^{6}-\frac {\left (384 a^{2} c^{6} d^{7}+288 a \,b^{2} c^{5} d^{7}+204 b^{4} c^{4} d^{7}\right ) x^{2}}{c^{2}}+192 b \,d^{7} c^{5} x^{5}-320 d^{7} c^{3} b^{3} x^{3}-\frac {2 b \left (192 a^{2} c^{5} d^{7}+144 a \,b^{2} c^{4} d^{7}+6 b^{4} c^{3} d^{7}\right ) x}{c^{2}}}{\left (c \,x^{2}+b x +a \right )^{2}}+\left (-192 a \,d^{7} c^{3}+48 b^{2} d^{7} c^{2}\right ) \ln \left (c \,x^{2}+b x +a \right )\) \(224\)
parallelrisch \(-\frac {12 a \,b^{4} c^{3} d^{7}+768 x \,a^{2} b \,c^{5} d^{7}+576 x a \,b^{3} c^{4} d^{7}+576 x^{2} a \,b^{2} c^{5} d^{7}+384 \ln \left (c \,x^{2}+b x +a \right ) x^{4} a \,c^{7} d^{7}-96 \ln \left (c \,x^{2}+b x +a \right ) x^{4} b^{2} c^{6} d^{7}-192 \ln \left (c \,x^{2}+b x +a \right ) x^{3} b^{3} c^{5} d^{7}+768 \ln \left (c \,x^{2}+b x +a \right ) x^{2} a^{2} c^{6} d^{7}-96 \ln \left (c \,x^{2}+b x +a \right ) x^{2} b^{4} c^{4} d^{7}-96 \ln \left (c \,x^{2}+b x +a \right ) a^{2} b^{2} c^{4} d^{7}+768 \ln \left (c \,x^{2}+b x +a \right ) x^{3} a b \,c^{6} d^{7}+192 \ln \left (c \,x^{2}+b x +a \right ) x^{2} a \,b^{2} c^{5} d^{7}+768 \ln \left (c \,x^{2}+b x +a \right ) x \,a^{2} b \,c^{5} d^{7}-192 \ln \left (c \,x^{2}+b x +a \right ) x a \,b^{3} c^{4} d^{7}-128 d^{7} c^{8} x^{6}+408 x^{2} b^{4} c^{4} d^{7}+640 x^{3} b^{3} c^{5} d^{7}+384 \ln \left (c \,x^{2}+b x +a \right ) a^{3} c^{5} d^{7}+240 a^{2} b^{2} c^{4} d^{7}-384 b \,d^{7} c^{7} x^{5}+24 x \,b^{5} c^{3} d^{7}+768 x^{2} a^{2} c^{6} d^{7}+576 a^{3} c^{5} d^{7}+b^{6} c^{2} d^{7}}{2 c^{2} \left (c \,x^{2}+b x +a \right )^{2}}\) \(452\)

Input:

int((2*c*d*x+b*d)^7/(c*x^2+b*x+a)^3,x,method=_RETURNVERBOSE)
 

Output:

d^7*(64*c^4*x^2+64*b*c^3*x-(12*c^2*(16*a^2*c^2-8*a*b^2*c+b^4)*x^2+12*b*c*( 
16*a^2*c^2-8*a*b^2*c+b^4)*x+160*a^3*c^3-72*a^2*b^2*c^2+6*a*b^4*c+1/2*b^6)/ 
(c*x^2+b*x+a)^2-48*c^2*(4*a*c-b^2)*ln(c*x^2+b*x+a))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 346 vs. \(2 (95) = 190\).

Time = 0.09 (sec) , antiderivative size = 346, normalized size of antiderivative = 3.57 \[ \int \frac {(b d+2 c d x)^7}{\left (a+b x+c x^2\right )^3} \, dx=\frac {128 \, c^{6} d^{7} x^{6} + 384 \, b c^{5} d^{7} x^{5} + 128 \, {\left (3 \, b^{2} c^{4} + 2 \, a c^{5}\right )} d^{7} x^{4} + 128 \, {\left (b^{3} c^{3} + 4 \, a b c^{4}\right )} d^{7} x^{3} - 8 \, {\left (3 \, b^{4} c^{2} - 56 \, a b^{2} c^{3} + 32 \, a^{2} c^{4}\right )} d^{7} x^{2} - 8 \, {\left (3 \, b^{5} c - 24 \, a b^{3} c^{2} + 32 \, a^{2} b c^{3}\right )} d^{7} x - {\left (b^{6} + 12 \, a b^{4} c - 144 \, a^{2} b^{2} c^{2} + 320 \, a^{3} c^{3}\right )} d^{7} + 96 \, {\left ({\left (b^{2} c^{4} - 4 \, a c^{5}\right )} d^{7} x^{4} + 2 \, {\left (b^{3} c^{3} - 4 \, a b c^{4}\right )} d^{7} x^{3} + {\left (b^{4} c^{2} - 2 \, a b^{2} c^{3} - 8 \, a^{2} c^{4}\right )} d^{7} x^{2} + 2 \, {\left (a b^{3} c^{2} - 4 \, a^{2} b c^{3}\right )} d^{7} x + {\left (a^{2} b^{2} c^{2} - 4 \, a^{3} c^{3}\right )} d^{7}\right )} \log \left (c x^{2} + b x + a\right )}{2 \, {\left (c^{2} x^{4} + 2 \, b c x^{3} + 2 \, a b x + {\left (b^{2} + 2 \, a c\right )} x^{2} + a^{2}\right )}} \] Input:

integrate((2*c*d*x+b*d)^7/(c*x^2+b*x+a)^3,x, algorithm="fricas")
 

Output:

1/2*(128*c^6*d^7*x^6 + 384*b*c^5*d^7*x^5 + 128*(3*b^2*c^4 + 2*a*c^5)*d^7*x 
^4 + 128*(b^3*c^3 + 4*a*b*c^4)*d^7*x^3 - 8*(3*b^4*c^2 - 56*a*b^2*c^3 + 32* 
a^2*c^4)*d^7*x^2 - 8*(3*b^5*c - 24*a*b^3*c^2 + 32*a^2*b*c^3)*d^7*x - (b^6 
+ 12*a*b^4*c - 144*a^2*b^2*c^2 + 320*a^3*c^3)*d^7 + 96*((b^2*c^4 - 4*a*c^5 
)*d^7*x^4 + 2*(b^3*c^3 - 4*a*b*c^4)*d^7*x^3 + (b^4*c^2 - 2*a*b^2*c^3 - 8*a 
^2*c^4)*d^7*x^2 + 2*(a*b^3*c^2 - 4*a^2*b*c^3)*d^7*x + (a^2*b^2*c^2 - 4*a^3 
*c^3)*d^7)*log(c*x^2 + b*x + a))/(c^2*x^4 + 2*b*c*x^3 + 2*a*b*x + (b^2 + 2 
*a*c)*x^2 + a^2)
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 219 vs. \(2 (95) = 190\).

Time = 3.18 (sec) , antiderivative size = 219, normalized size of antiderivative = 2.26 \[ \int \frac {(b d+2 c d x)^7}{\left (a+b x+c x^2\right )^3} \, dx=64 b c^{3} d^{7} x + 64 c^{4} d^{7} x^{2} - 48 c^{2} d^{7} \cdot \left (4 a c - b^{2}\right ) \log {\left (a + b x + c x^{2} \right )} + \frac {- 320 a^{3} c^{3} d^{7} + 144 a^{2} b^{2} c^{2} d^{7} - 12 a b^{4} c d^{7} - b^{6} d^{7} + x^{2} \left (- 384 a^{2} c^{4} d^{7} + 192 a b^{2} c^{3} d^{7} - 24 b^{4} c^{2} d^{7}\right ) + x \left (- 384 a^{2} b c^{3} d^{7} + 192 a b^{3} c^{2} d^{7} - 24 b^{5} c d^{7}\right )}{2 a^{2} + 4 a b x + 4 b c x^{3} + 2 c^{2} x^{4} + x^{2} \cdot \left (4 a c + 2 b^{2}\right )} \] Input:

integrate((2*c*d*x+b*d)**7/(c*x**2+b*x+a)**3,x)
 

Output:

64*b*c**3*d**7*x + 64*c**4*d**7*x**2 - 48*c**2*d**7*(4*a*c - b**2)*log(a + 
 b*x + c*x**2) + (-320*a**3*c**3*d**7 + 144*a**2*b**2*c**2*d**7 - 12*a*b** 
4*c*d**7 - b**6*d**7 + x**2*(-384*a**2*c**4*d**7 + 192*a*b**2*c**3*d**7 - 
24*b**4*c**2*d**7) + x*(-384*a**2*b*c**3*d**7 + 192*a*b**3*c**2*d**7 - 24* 
b**5*c*d**7))/(2*a**2 + 4*a*b*x + 4*b*c*x**3 + 2*c**2*x**4 + x**2*(4*a*c + 
 2*b**2))
 

Maxima [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.95 \[ \int \frac {(b d+2 c d x)^7}{\left (a+b x+c x^2\right )^3} \, dx=64 \, c^{4} d^{7} x^{2} + 64 \, b c^{3} d^{7} x + 48 \, {\left (b^{2} c^{2} - 4 \, a c^{3}\right )} d^{7} \log \left (c x^{2} + b x + a\right ) - \frac {24 \, {\left (b^{4} c^{2} - 8 \, a b^{2} c^{3} + 16 \, a^{2} c^{4}\right )} d^{7} x^{2} + 24 \, {\left (b^{5} c - 8 \, a b^{3} c^{2} + 16 \, a^{2} b c^{3}\right )} d^{7} x + {\left (b^{6} + 12 \, a b^{4} c - 144 \, a^{2} b^{2} c^{2} + 320 \, a^{3} c^{3}\right )} d^{7}}{2 \, {\left (c^{2} x^{4} + 2 \, b c x^{3} + 2 \, a b x + {\left (b^{2} + 2 \, a c\right )} x^{2} + a^{2}\right )}} \] Input:

integrate((2*c*d*x+b*d)^7/(c*x^2+b*x+a)^3,x, algorithm="maxima")
 

Output:

64*c^4*d^7*x^2 + 64*b*c^3*d^7*x + 48*(b^2*c^2 - 4*a*c^3)*d^7*log(c*x^2 + b 
*x + a) - 1/2*(24*(b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*d^7*x^2 + 24*(b^5*c 
 - 8*a*b^3*c^2 + 16*a^2*b*c^3)*d^7*x + (b^6 + 12*a*b^4*c - 144*a^2*b^2*c^2 
 + 320*a^3*c^3)*d^7)/(c^2*x^4 + 2*b*c*x^3 + 2*a*b*x + (b^2 + 2*a*c)*x^2 + 
a^2)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 191 vs. \(2 (95) = 190\).

Time = 0.15 (sec) , antiderivative size = 191, normalized size of antiderivative = 1.97 \[ \int \frac {(b d+2 c d x)^7}{\left (a+b x+c x^2\right )^3} \, dx=48 \, {\left (b^{2} c^{2} d^{7} - 4 \, a c^{3} d^{7}\right )} \log \left (c x^{2} + b x + a\right ) - \frac {b^{6} d^{7} + 12 \, a b^{4} c d^{7} - 144 \, a^{2} b^{2} c^{2} d^{7} + 320 \, a^{3} c^{3} d^{7} + 24 \, {\left (b^{4} c^{2} d^{7} - 8 \, a b^{2} c^{3} d^{7} + 16 \, a^{2} c^{4} d^{7}\right )} x^{2} + 24 \, {\left (b^{5} c d^{7} - 8 \, a b^{3} c^{2} d^{7} + 16 \, a^{2} b c^{3} d^{7}\right )} x}{2 \, {\left (c x^{2} + b x + a\right )}^{2}} + \frac {64 \, {\left (c^{10} d^{7} x^{2} + b c^{9} d^{7} x\right )}}{c^{6}} \] Input:

integrate((2*c*d*x+b*d)^7/(c*x^2+b*x+a)^3,x, algorithm="giac")
 

Output:

48*(b^2*c^2*d^7 - 4*a*c^3*d^7)*log(c*x^2 + b*x + a) - 1/2*(b^6*d^7 + 12*a* 
b^4*c*d^7 - 144*a^2*b^2*c^2*d^7 + 320*a^3*c^3*d^7 + 24*(b^4*c^2*d^7 - 8*a* 
b^2*c^3*d^7 + 16*a^2*c^4*d^7)*x^2 + 24*(b^5*c*d^7 - 8*a*b^3*c^2*d^7 + 16*a 
^2*b*c^3*d^7)*x)/(c*x^2 + b*x + a)^2 + 64*(c^10*d^7*x^2 + b*c^9*d^7*x)/c^6
 

Mupad [B] (verification not implemented)

Time = 5.87 (sec) , antiderivative size = 214, normalized size of antiderivative = 2.21 \[ \int \frac {(b d+2 c d x)^7}{\left (a+b x+c x^2\right )^3} \, dx=64\,c^4\,d^7\,x^2-\ln \left (c\,x^2+b\,x+a\right )\,\left (192\,a\,c^3\,d^7-48\,b^2\,c^2\,d^7\right )-\frac {\frac {b^6\,d^7}{2}+x^2\,\left (192\,a^2\,c^4\,d^7-96\,a\,b^2\,c^3\,d^7+12\,b^4\,c^2\,d^7\right )+12\,b\,x\,\left (16\,a^2\,c^3\,d^7-8\,a\,b^2\,c^2\,d^7+b^4\,c\,d^7\right )+160\,a^3\,c^3\,d^7-72\,a^2\,b^2\,c^2\,d^7+6\,a\,b^4\,c\,d^7}{x^2\,\left (b^2+2\,a\,c\right )+a^2+c^2\,x^4+2\,a\,b\,x+2\,b\,c\,x^3}+64\,b\,c^3\,d^7\,x \] Input:

int((b*d + 2*c*d*x)^7/(a + b*x + c*x^2)^3,x)
 

Output:

64*c^4*d^7*x^2 - log(a + b*x + c*x^2)*(192*a*c^3*d^7 - 48*b^2*c^2*d^7) - ( 
(b^6*d^7)/2 + x^2*(192*a^2*c^4*d^7 + 12*b^4*c^2*d^7 - 96*a*b^2*c^3*d^7) + 
12*b*x*(b^4*c*d^7 + 16*a^2*c^3*d^7 - 8*a*b^2*c^2*d^7) + 160*a^3*c^3*d^7 - 
72*a^2*b^2*c^2*d^7 + 6*a*b^4*c*d^7)/(x^2*(2*a*c + b^2) + a^2 + c^2*x^4 + 2 
*a*b*x + 2*b*c*x^3) + 64*b*c^3*d^7*x
 

Reduce [B] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 403, normalized size of antiderivative = 4.15 \[ \int \frac {(b d+2 c d x)^7}{\left (a+b x+c x^2\right )^3} \, dx=\frac {d^{7} \left (-384 \,\mathrm {log}\left (c \,x^{2}+b x +a \right ) a^{3} c^{3}+96 \,\mathrm {log}\left (c \,x^{2}+b x +a \right ) a^{2} b^{2} c^{2}-768 \,\mathrm {log}\left (c \,x^{2}+b x +a \right ) a^{2} b \,c^{3} x -768 \,\mathrm {log}\left (c \,x^{2}+b x +a \right ) a^{2} c^{4} x^{2}+192 \,\mathrm {log}\left (c \,x^{2}+b x +a \right ) a \,b^{3} c^{2} x -192 \,\mathrm {log}\left (c \,x^{2}+b x +a \right ) a \,b^{2} c^{3} x^{2}-768 \,\mathrm {log}\left (c \,x^{2}+b x +a \right ) a b \,c^{4} x^{3}-384 \,\mathrm {log}\left (c \,x^{2}+b x +a \right ) a \,c^{5} x^{4}+96 \,\mathrm {log}\left (c \,x^{2}+b x +a \right ) b^{4} c^{2} x^{2}+192 \,\mathrm {log}\left (c \,x^{2}+b x +a \right ) b^{3} c^{3} x^{3}+96 \,\mathrm {log}\left (c \,x^{2}+b x +a \right ) b^{2} c^{4} x^{4}-576 a^{3} c^{3}+80 a^{2} b^{2} c^{2}-768 a^{2} b \,c^{3} x -768 a^{2} c^{4} x^{2}-12 a \,b^{4} c +64 a \,b^{3} c^{2} x +64 a \,b^{2} c^{3} x^{2}-b^{6}-24 b^{5} c x -88 b^{4} c^{2} x^{2}+320 b^{2} c^{4} x^{4}+384 b \,c^{5} x^{5}+128 c^{6} x^{6}\right )}{2 c^{2} x^{4}+4 b c \,x^{3}+4 a c \,x^{2}+2 b^{2} x^{2}+4 a b x +2 a^{2}} \] Input:

int((2*c*d*x+b*d)^7/(c*x^2+b*x+a)^3,x)
 

Output:

(d**7*( - 384*log(a + b*x + c*x**2)*a**3*c**3 + 96*log(a + b*x + c*x**2)*a 
**2*b**2*c**2 - 768*log(a + b*x + c*x**2)*a**2*b*c**3*x - 768*log(a + b*x 
+ c*x**2)*a**2*c**4*x**2 + 192*log(a + b*x + c*x**2)*a*b**3*c**2*x - 192*l 
og(a + b*x + c*x**2)*a*b**2*c**3*x**2 - 768*log(a + b*x + c*x**2)*a*b*c**4 
*x**3 - 384*log(a + b*x + c*x**2)*a*c**5*x**4 + 96*log(a + b*x + c*x**2)*b 
**4*c**2*x**2 + 192*log(a + b*x + c*x**2)*b**3*c**3*x**3 + 96*log(a + b*x 
+ c*x**2)*b**2*c**4*x**4 - 576*a**3*c**3 + 80*a**2*b**2*c**2 - 768*a**2*b* 
c**3*x - 768*a**2*c**4*x**2 - 12*a*b**4*c + 64*a*b**3*c**2*x + 64*a*b**2*c 
**3*x**2 - b**6 - 24*b**5*c*x - 88*b**4*c**2*x**2 + 320*b**2*c**4*x**4 + 3 
84*b*c**5*x**5 + 128*c**6*x**6))/(2*(a**2 + 2*a*b*x + 2*a*c*x**2 + b**2*x* 
*2 + 2*b*c*x**3 + c**2*x**4))