\(\int \frac {(2+d x)^{3/2}}{\sqrt {2-d x} \sqrt {e+f x}} \, dx\) [73]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 29, antiderivative size = 186 \[ \int \frac {(2+d x)^{3/2}}{\sqrt {2-d x} \sqrt {e+f x}} \, dx=-\frac {2 \sqrt {2-d x} \sqrt {2+d x} \sqrt {e+f x}}{3 f}+\frac {4 (d e-6 f) \sqrt {e+f x} E\left (\arcsin \left (\frac {1}{2} \sqrt {2-d x}\right )|\frac {4 f}{d e+2 f}\right )}{3 f^2 \sqrt {\frac {d (e+f x)}{d e+2 f}}}-\frac {4 \left (\frac {8}{d}+\frac {e (d e-6 f)}{f^2}\right ) \sqrt {\frac {d (e+f x)}{d e+2 f}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1}{2} \sqrt {2-d x}\right ),\frac {4 f}{d e+2 f}\right )}{3 \sqrt {e+f x}} \] Output:

-2/3*(-d*x+2)^(1/2)*(d*x+2)^(1/2)*(f*x+e)^(1/2)/f+4/3*(d*e-6*f)*(f*x+e)^(1 
/2)*EllipticE(1/2*(-d*x+2)^(1/2),2*(f/(d*e+2*f))^(1/2))/f^2/(d*(f*x+e)/(d* 
e+2*f))^(1/2)-4/3*(8/d+e*(d*e-6*f)/f^2)*(d*(f*x+e)/(d*e+2*f))^(1/2)*Ellipt 
icF(1/2*(-d*x+2)^(1/2),2*(f/(d*e+2*f))^(1/2))/(f*x+e)^(1/2)
 

Mathematica [A] (verified)

Time = 17.02 (sec) , antiderivative size = 179, normalized size of antiderivative = 0.96 \[ \int \frac {(2+d x)^{3/2}}{\sqrt {2-d x} \sqrt {e+f x}} \, dx=\frac {-2 d f (e+f x) \sqrt {4-d^2 x^2}+4 \left (d^2 e^2-4 d e f-12 f^2\right ) \sqrt {\frac {d (e+f x)}{d e+2 f}} E\left (\arcsin \left (\frac {1}{2} \sqrt {2-d x}\right )|\frac {4 f}{d e+2 f}\right )-4 \left (d^2 e^2-6 d e f+8 f^2\right ) \sqrt {\frac {d (e+f x)}{d e+2 f}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1}{2} \sqrt {2-d x}\right ),\frac {4 f}{d e+2 f}\right )}{3 d f^2 \sqrt {e+f x}} \] Input:

Integrate[(2 + d*x)^(3/2)/(Sqrt[2 - d*x]*Sqrt[e + f*x]),x]
 

Output:

(-2*d*f*(e + f*x)*Sqrt[4 - d^2*x^2] + 4*(d^2*e^2 - 4*d*e*f - 12*f^2)*Sqrt[ 
(d*(e + f*x))/(d*e + 2*f)]*EllipticE[ArcSin[Sqrt[2 - d*x]/2], (4*f)/(d*e + 
 2*f)] - 4*(d^2*e^2 - 6*d*e*f + 8*f^2)*Sqrt[(d*(e + f*x))/(d*e + 2*f)]*Ell 
ipticF[ArcSin[Sqrt[2 - d*x]/2], (4*f)/(d*e + 2*f)])/(3*d*f^2*Sqrt[e + f*x] 
)
 

Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 212, normalized size of antiderivative = 1.14, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.310, Rules used = {113, 25, 27, 176, 124, 27, 123, 131, 129}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(d x+2)^{3/2}}{\sqrt {2-d x} \sqrt {e+f x}} \, dx\)

\(\Big \downarrow \) 113

\(\displaystyle -\frac {2 \int -\frac {d (8 f-d (d e-6 f) x)}{\sqrt {2-d x} \sqrt {d x+2} \sqrt {e+f x}}dx}{3 d f}-\frac {2 \sqrt {2-d x} \sqrt {d x+2} \sqrt {e+f x}}{3 f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \int \frac {d (8 f-d (d e-6 f) x)}{\sqrt {2-d x} \sqrt {d x+2} \sqrt {e+f x}}dx}{3 d f}-\frac {2 \sqrt {2-d x} \sqrt {d x+2} \sqrt {e+f x}}{3 f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \int \frac {8 f-d (d e-6 f) x}{\sqrt {2-d x} \sqrt {d x+2} \sqrt {e+f x}}dx}{3 f}-\frac {2 \sqrt {2-d x} \sqrt {d x+2} \sqrt {e+f x}}{3 f}\)

\(\Big \downarrow \) 176

\(\displaystyle \frac {2 \left ((d e-6 f) \int \frac {\sqrt {2-d x}}{\sqrt {d x+2} \sqrt {e+f x}}dx-2 (d e-10 f) \int \frac {1}{\sqrt {2-d x} \sqrt {d x+2} \sqrt {e+f x}}dx\right )}{3 f}-\frac {2 \sqrt {2-d x} \sqrt {d x+2} \sqrt {e+f x}}{3 f}\)

\(\Big \downarrow \) 124

\(\displaystyle \frac {2 \left (\frac {2 (d e-6 f) \sqrt {\frac {d (e+f x)}{d e-2 f}} \int \frac {\sqrt {2-d x}}{2 \sqrt {d x+2} \sqrt {\frac {d e}{d e-2 f}+\frac {d f x}{d e-2 f}}}dx}{\sqrt {e+f x}}-2 (d e-10 f) \int \frac {1}{\sqrt {2-d x} \sqrt {d x+2} \sqrt {e+f x}}dx\right )}{3 f}-\frac {2 \sqrt {2-d x} \sqrt {d x+2} \sqrt {e+f x}}{3 f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (\frac {(d e-6 f) \sqrt {\frac {d (e+f x)}{d e-2 f}} \int \frac {\sqrt {2-d x}}{\sqrt {d x+2} \sqrt {\frac {d e}{d e-2 f}+\frac {d f x}{d e-2 f}}}dx}{\sqrt {e+f x}}-2 (d e-10 f) \int \frac {1}{\sqrt {2-d x} \sqrt {d x+2} \sqrt {e+f x}}dx\right )}{3 f}-\frac {2 \sqrt {2-d x} \sqrt {d x+2} \sqrt {e+f x}}{3 f}\)

\(\Big \downarrow \) 123

\(\displaystyle \frac {2 \left (\frac {4 (d e-6 f) \sqrt {2 f-d e} \sqrt {\frac {d (e+f x)}{d e-2 f}} E\left (\arcsin \left (\frac {\sqrt {f} \sqrt {d x+2}}{\sqrt {2 f-d e}}\right )|\frac {1}{4} \left (2-\frac {d e}{f}\right )\right )}{d \sqrt {f} \sqrt {e+f x}}-2 (d e-10 f) \int \frac {1}{\sqrt {2-d x} \sqrt {d x+2} \sqrt {e+f x}}dx\right )}{3 f}-\frac {2 \sqrt {2-d x} \sqrt {d x+2} \sqrt {e+f x}}{3 f}\)

\(\Big \downarrow \) 131

\(\displaystyle \frac {2 \left (\frac {4 (d e-6 f) \sqrt {2 f-d e} \sqrt {\frac {d (e+f x)}{d e-2 f}} E\left (\arcsin \left (\frac {\sqrt {f} \sqrt {d x+2}}{\sqrt {2 f-d e}}\right )|\frac {1}{4} \left (2-\frac {d e}{f}\right )\right )}{d \sqrt {f} \sqrt {e+f x}}-\frac {2 (d e-10 f) \sqrt {\frac {d (e+f x)}{d e-2 f}} \int \frac {1}{\sqrt {2-d x} \sqrt {d x+2} \sqrt {\frac {d e}{d e-2 f}+\frac {d f x}{d e-2 f}}}dx}{\sqrt {e+f x}}\right )}{3 f}-\frac {2 \sqrt {2-d x} \sqrt {d x+2} \sqrt {e+f x}}{3 f}\)

\(\Big \downarrow \) 129

\(\displaystyle \frac {2 \left (\frac {4 (d e-6 f) \sqrt {2 f-d e} \sqrt {\frac {d (e+f x)}{d e-2 f}} E\left (\arcsin \left (\frac {\sqrt {f} \sqrt {d x+2}}{\sqrt {2 f-d e}}\right )|\frac {1}{4} \left (2-\frac {d e}{f}\right )\right )}{d \sqrt {f} \sqrt {e+f x}}-\frac {4 (d e-10 f) \sqrt {\frac {d (e+f x)}{d e-2 f}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1}{2} \sqrt {d x+2}\right ),-\frac {4 f}{d e-2 f}\right )}{d \sqrt {e+f x}}\right )}{3 f}-\frac {2 \sqrt {2-d x} \sqrt {d x+2} \sqrt {e+f x}}{3 f}\)

Input:

Int[(2 + d*x)^(3/2)/(Sqrt[2 - d*x]*Sqrt[e + f*x]),x]
 

Output:

(-2*Sqrt[2 - d*x]*Sqrt[2 + d*x]*Sqrt[e + f*x])/(3*f) + (2*((4*(d*e - 6*f)* 
Sqrt[-(d*e) + 2*f]*Sqrt[(d*(e + f*x))/(d*e - 2*f)]*EllipticE[ArcSin[(Sqrt[ 
f]*Sqrt[2 + d*x])/Sqrt[-(d*e) + 2*f]], (2 - (d*e)/f)/4])/(d*Sqrt[f]*Sqrt[e 
 + f*x]) - (4*(d*e - 10*f)*Sqrt[(d*(e + f*x))/(d*e - 2*f)]*EllipticF[ArcSi 
n[Sqrt[2 + d*x]/2], (-4*f)/(d*e - 2*f)])/(d*Sqrt[e + f*x])))/(3*f)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 113
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m - 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/(d*f*(m + n + p + 1))), x] + Simp[1/(d*f*(m + n + p + 1))   Int[(a + b*x) 
^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m 
 - 1) + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m 
 + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] & 
& GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]
 

rule 123
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[(2/b)*Rt[-(b*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x] 
/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /; FreeQ[{a, 
b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !L 
tQ[-(b*c - a*d)/d, 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d 
), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])
 

rule 124
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[Sqrt[e + f*x]*(Sqrt[b*((c + d*x)/(b*c - a*d))]/(Sqrt[c + d 
*x]*Sqrt[b*((e + f*x)/(b*e - a*f))]))   Int[Sqrt[b*(e/(b*e - a*f)) + b*f*(x 
/(b*e - a*f))]/(Sqrt[a + b*x]*Sqrt[b*(c/(b*c - a*d)) + b*d*(x/(b*c - a*d))] 
), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &&  !(GtQ[b/(b*c - a*d), 0] && Gt 
Q[b/(b*e - a*f), 0]) &&  !LtQ[-(b*c - a*d)/d, 0]
 

rule 129
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x 
_)]), x_] :> Simp[2*(Rt[-b/d, 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[ 
Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)/(d*(b*e - 
a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ 
[(b*e - a*f)/b, 0] && PosQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d 
*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(( 
-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ 
[((-d)*e + c*f)/f, 0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f 
/b]))
 

rule 131
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x 
_)]), x_] :> Simp[Sqrt[b*((c + d*x)/(b*c - a*d))]/Sqrt[c + d*x]   Int[1/(Sq 
rt[a + b*x]*Sqrt[b*(c/(b*c - a*d)) + b*d*(x/(b*c - a*d))]*Sqrt[e + f*x]), x 
], x] /; FreeQ[{a, b, c, d, e, f}, x] &&  !GtQ[(b*c - a*d)/b, 0] && Simpler 
Q[a + b*x, c + d*x] && SimplerQ[a + b*x, e + f*x]
 

rule 176
Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]* 
Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[h/f   Int[Sqrt[e + f*x]/(Sqrt[a + b*x 
]*Sqrt[c + d*x]), x], x] + Simp[(f*g - e*h)/f   Int[1/(Sqrt[a + b*x]*Sqrt[c 
 + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && Sim 
plerQ[a + b*x, e + f*x] && SimplerQ[c + d*x, e + f*x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(490\) vs. \(2(162)=324\).

Time = 2.29 (sec) , antiderivative size = 491, normalized size of antiderivative = 2.64

method result size
elliptic \(\frac {\sqrt {-\left (f x +e \right ) \left (d^{2} x^{2}-4\right )}\, \left (-\frac {2 \sqrt {-d^{2} f \,x^{3}-d^{2} e \,x^{2}+4 f x +4 e}}{3 f}+\frac {32 \left (\frac {e}{f}+\frac {2}{d}\right ) \sqrt {\frac {x +\frac {e}{f}}{\frac {e}{f}+\frac {2}{d}}}\, \sqrt {\frac {x +\frac {2}{d}}{-\frac {e}{f}+\frac {2}{d}}}\, \sqrt {\frac {x -\frac {2}{d}}{-\frac {e}{f}-\frac {2}{d}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x +\frac {e}{f}}{\frac {e}{f}+\frac {2}{d}}}, \sqrt {\frac {-\frac {e}{f}-\frac {2}{d}}{-\frac {e}{f}+\frac {2}{d}}}\right )}{3 \sqrt {-d^{2} f \,x^{3}-d^{2} e \,x^{2}+4 f x +4 e}}+\frac {2 \left (4 d -\frac {2 d^{2} e}{3 f}\right ) \left (\frac {e}{f}+\frac {2}{d}\right ) \sqrt {\frac {x +\frac {e}{f}}{\frac {e}{f}+\frac {2}{d}}}\, \sqrt {\frac {x +\frac {2}{d}}{-\frac {e}{f}+\frac {2}{d}}}\, \sqrt {\frac {x -\frac {2}{d}}{-\frac {e}{f}-\frac {2}{d}}}\, \left (\left (-\frac {e}{f}+\frac {2}{d}\right ) \operatorname {EllipticE}\left (\sqrt {\frac {x +\frac {e}{f}}{\frac {e}{f}+\frac {2}{d}}}, \sqrt {\frac {-\frac {e}{f}-\frac {2}{d}}{-\frac {e}{f}+\frac {2}{d}}}\right )-\frac {2 \operatorname {EllipticF}\left (\sqrt {\frac {x +\frac {e}{f}}{\frac {e}{f}+\frac {2}{d}}}, \sqrt {\frac {-\frac {e}{f}-\frac {2}{d}}{-\frac {e}{f}+\frac {2}{d}}}\right )}{d}\right )}{\sqrt {-d^{2} f \,x^{3}-d^{2} e \,x^{2}+4 f x +4 e}}\right )}{\sqrt {d x +2}\, \sqrt {-d x +2}\, \sqrt {f x +e}}\) \(491\)
default \(-\frac {2 \left (2 \sqrt {\frac {d \left (f x +e \right )}{d e +2 f}}\, \sqrt {-\frac {\left (d x +2\right ) f}{d e -2 f}}\, \sqrt {-\frac {f \left (d x -2\right )}{d e +2 f}}\, \operatorname {EllipticE}\left (\sqrt {\frac {d \left (f x +e \right )}{d e +2 f}}, \sqrt {\frac {d e +2 f}{d e -2 f}}\right ) d^{3} e^{3}+4 \sqrt {\frac {d \left (f x +e \right )}{d e +2 f}}\, \sqrt {-\frac {\left (d x +2\right ) f}{d e -2 f}}\, \sqrt {-\frac {f \left (d x -2\right )}{d e +2 f}}\, \operatorname {EllipticF}\left (\sqrt {\frac {d \left (f x +e \right )}{d e +2 f}}, \sqrt {\frac {d e +2 f}{d e -2 f}}\right ) d^{2} e^{2} f -12 \sqrt {\frac {d \left (f x +e \right )}{d e +2 f}}\, \sqrt {-\frac {\left (d x +2\right ) f}{d e -2 f}}\, \sqrt {-\frac {f \left (d x -2\right )}{d e +2 f}}\, \operatorname {EllipticE}\left (\sqrt {\frac {d \left (f x +e \right )}{d e +2 f}}, \sqrt {\frac {d e +2 f}{d e -2 f}}\right ) d^{2} e^{2} f +d^{3} f^{3} x^{3}-8 \sqrt {\frac {d \left (f x +e \right )}{d e +2 f}}\, \sqrt {-\frac {\left (d x +2\right ) f}{d e -2 f}}\, \sqrt {-\frac {f \left (d x -2\right )}{d e +2 f}}\, \operatorname {EllipticE}\left (\sqrt {\frac {d \left (f x +e \right )}{d e +2 f}}, \sqrt {\frac {d e +2 f}{d e -2 f}}\right ) d e \,f^{2}+d^{3} e \,f^{2} x^{2}-16 \sqrt {\frac {d \left (f x +e \right )}{d e +2 f}}\, \sqrt {-\frac {\left (d x +2\right ) f}{d e -2 f}}\, \sqrt {-\frac {f \left (d x -2\right )}{d e +2 f}}\, \operatorname {EllipticF}\left (\sqrt {\frac {d \left (f x +e \right )}{d e +2 f}}, \sqrt {\frac {d e +2 f}{d e -2 f}}\right ) f^{3}+48 \sqrt {\frac {d \left (f x +e \right )}{d e +2 f}}\, \sqrt {-\frac {\left (d x +2\right ) f}{d e -2 f}}\, \sqrt {-\frac {f \left (d x -2\right )}{d e +2 f}}\, \operatorname {EllipticE}\left (\sqrt {\frac {d \left (f x +e \right )}{d e +2 f}}, \sqrt {\frac {d e +2 f}{d e -2 f}}\right ) f^{3}-4 d \,f^{3} x -4 d e \,f^{2}\right ) \sqrt {f x +e}\, \sqrt {-d x +2}\, \sqrt {d x +2}}{3 d \,f^{3} \left (d^{2} f \,x^{3}+d^{2} e \,x^{2}-4 f x -4 e \right )}\) \(700\)

Input:

int((d*x+2)^(3/2)/(-d*x+2)^(1/2)/(f*x+e)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

(-(f*x+e)*(d^2*x^2-4))^(1/2)/(d*x+2)^(1/2)/(-d*x+2)^(1/2)/(f*x+e)^(1/2)*(- 
2/3/f*(-d^2*f*x^3-d^2*e*x^2+4*f*x+4*e)^(1/2)+32/3*(e/f+2/d)*((x+e/f)/(e/f+ 
2/d))^(1/2)*((x+2/d)/(-e/f+2/d))^(1/2)*((x-2/d)/(-e/f-2/d))^(1/2)/(-d^2*f* 
x^3-d^2*e*x^2+4*f*x+4*e)^(1/2)*EllipticF(((x+e/f)/(e/f+2/d))^(1/2),((-e/f- 
2/d)/(-e/f+2/d))^(1/2))+2*(4*d-2/3*d^2*e/f)*(e/f+2/d)*((x+e/f)/(e/f+2/d))^ 
(1/2)*((x+2/d)/(-e/f+2/d))^(1/2)*((x-2/d)/(-e/f-2/d))^(1/2)/(-d^2*f*x^3-d^ 
2*e*x^2+4*f*x+4*e)^(1/2)*((-e/f+2/d)*EllipticE(((x+e/f)/(e/f+2/d))^(1/2),( 
(-e/f-2/d)/(-e/f+2/d))^(1/2))-2/d*EllipticF(((x+e/f)/(e/f+2/d))^(1/2),((-e 
/f-2/d)/(-e/f+2/d))^(1/2))))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 244, normalized size of antiderivative = 1.31 \[ \int \frac {(2+d x)^{3/2}}{\sqrt {2-d x} \sqrt {e+f x}} \, dx=-\frac {2 \, {\left (3 \, \sqrt {d x + 2} \sqrt {-d x + 2} \sqrt {f x + e} d^{2} f^{2} + 2 \, {\left (d^{2} e^{2} - 6 \, d e f + 24 \, f^{2}\right )} \sqrt {-d^{2} f} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (d^{2} e^{2} + 12 \, f^{2}\right )}}{3 \, d^{2} f^{2}}, -\frac {8 \, {\left (d^{2} e^{3} - 36 \, e f^{2}\right )}}{27 \, d^{2} f^{3}}, \frac {3 \, f x + e}{3 \, f}\right ) + 6 \, {\left (d^{2} e f - 6 \, d f^{2}\right )} \sqrt {-d^{2} f} {\rm weierstrassZeta}\left (\frac {4 \, {\left (d^{2} e^{2} + 12 \, f^{2}\right )}}{3 \, d^{2} f^{2}}, -\frac {8 \, {\left (d^{2} e^{3} - 36 \, e f^{2}\right )}}{27 \, d^{2} f^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (d^{2} e^{2} + 12 \, f^{2}\right )}}{3 \, d^{2} f^{2}}, -\frac {8 \, {\left (d^{2} e^{3} - 36 \, e f^{2}\right )}}{27 \, d^{2} f^{3}}, \frac {3 \, f x + e}{3 \, f}\right )\right )\right )}}{9 \, d^{2} f^{3}} \] Input:

integrate((d*x+2)^(3/2)/(-d*x+2)^(1/2)/(f*x+e)^(1/2),x, algorithm="fricas" 
)
 

Output:

-2/9*(3*sqrt(d*x + 2)*sqrt(-d*x + 2)*sqrt(f*x + e)*d^2*f^2 + 2*(d^2*e^2 - 
6*d*e*f + 24*f^2)*sqrt(-d^2*f)*weierstrassPInverse(4/3*(d^2*e^2 + 12*f^2)/ 
(d^2*f^2), -8/27*(d^2*e^3 - 36*e*f^2)/(d^2*f^3), 1/3*(3*f*x + e)/f) + 6*(d 
^2*e*f - 6*d*f^2)*sqrt(-d^2*f)*weierstrassZeta(4/3*(d^2*e^2 + 12*f^2)/(d^2 
*f^2), -8/27*(d^2*e^3 - 36*e*f^2)/(d^2*f^3), weierstrassPInverse(4/3*(d^2* 
e^2 + 12*f^2)/(d^2*f^2), -8/27*(d^2*e^3 - 36*e*f^2)/(d^2*f^3), 1/3*(3*f*x 
+ e)/f)))/(d^2*f^3)
 

Sympy [F]

\[ \int \frac {(2+d x)^{3/2}}{\sqrt {2-d x} \sqrt {e+f x}} \, dx=\int \frac {\left (d x + 2\right )^{\frac {3}{2}}}{\sqrt {e + f x} \sqrt {- d x + 2}}\, dx \] Input:

integrate((d*x+2)**(3/2)/(-d*x+2)**(1/2)/(f*x+e)**(1/2),x)
 

Output:

Integral((d*x + 2)**(3/2)/(sqrt(e + f*x)*sqrt(-d*x + 2)), x)
 

Maxima [F]

\[ \int \frac {(2+d x)^{3/2}}{\sqrt {2-d x} \sqrt {e+f x}} \, dx=\int { \frac {{\left (d x + 2\right )}^{\frac {3}{2}}}{\sqrt {-d x + 2} \sqrt {f x + e}} \,d x } \] Input:

integrate((d*x+2)^(3/2)/(-d*x+2)^(1/2)/(f*x+e)^(1/2),x, algorithm="maxima" 
)
 

Output:

integrate((d*x + 2)^(3/2)/(sqrt(-d*x + 2)*sqrt(f*x + e)), x)
 

Giac [F]

\[ \int \frac {(2+d x)^{3/2}}{\sqrt {2-d x} \sqrt {e+f x}} \, dx=\int { \frac {{\left (d x + 2\right )}^{\frac {3}{2}}}{\sqrt {-d x + 2} \sqrt {f x + e}} \,d x } \] Input:

integrate((d*x+2)^(3/2)/(-d*x+2)^(1/2)/(f*x+e)^(1/2),x, algorithm="giac")
 

Output:

integrate((d*x + 2)^(3/2)/(sqrt(-d*x + 2)*sqrt(f*x + e)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(2+d x)^{3/2}}{\sqrt {2-d x} \sqrt {e+f x}} \, dx=\int \frac {{\left (d\,x+2\right )}^{3/2}}{\sqrt {e+f\,x}\,\sqrt {2-d\,x}} \,d x \] Input:

int((d*x + 2)^(3/2)/((e + f*x)^(1/2)*(2 - d*x)^(1/2)),x)
 

Output:

int((d*x + 2)^(3/2)/((e + f*x)^(1/2)*(2 - d*x)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {(2+d x)^{3/2}}{\sqrt {2-d x} \sqrt {e+f x}} \, dx=\frac {-4 \sqrt {f x +e}\, \sqrt {d x +2}\, \sqrt {-d x +2}-\left (\int \frac {\sqrt {f x +e}\, \sqrt {d x +2}\, \sqrt {-d x +2}\, x^{2}}{d^{2} f \,x^{3}+d^{2} e \,x^{2}-4 f x -4 e}d x \right ) d^{3} e +6 \left (\int \frac {\sqrt {f x +e}\, \sqrt {d x +2}\, \sqrt {-d x +2}\, x^{2}}{d^{2} f \,x^{3}+d^{2} e \,x^{2}-4 f x -4 e}d x \right ) d^{2} f -4 \left (\int \frac {\sqrt {f x +e}\, \sqrt {d x +2}\, \sqrt {-d x +2}}{d^{2} f \,x^{3}+d^{2} e \,x^{2}-4 f x -4 e}d x \right ) d e -8 \left (\int \frac {\sqrt {f x +e}\, \sqrt {d x +2}\, \sqrt {-d x +2}}{d^{2} f \,x^{3}+d^{2} e \,x^{2}-4 f x -4 e}d x \right ) f}{d e} \] Input:

int((d*x+2)^(3/2)/(-d*x+2)^(1/2)/(f*x+e)^(1/2),x)
 

Output:

( - 4*sqrt(e + f*x)*sqrt(d*x + 2)*sqrt( - d*x + 2) - int((sqrt(e + f*x)*sq 
rt(d*x + 2)*sqrt( - d*x + 2)*x**2)/(d**2*e*x**2 + d**2*f*x**3 - 4*e - 4*f* 
x),x)*d**3*e + 6*int((sqrt(e + f*x)*sqrt(d*x + 2)*sqrt( - d*x + 2)*x**2)/( 
d**2*e*x**2 + d**2*f*x**3 - 4*e - 4*f*x),x)*d**2*f - 4*int((sqrt(e + f*x)* 
sqrt(d*x + 2)*sqrt( - d*x + 2))/(d**2*e*x**2 + d**2*f*x**3 - 4*e - 4*f*x), 
x)*d*e - 8*int((sqrt(e + f*x)*sqrt(d*x + 2)*sqrt( - d*x + 2))/(d**2*e*x**2 
 + d**2*f*x**3 - 4*e - 4*f*x),x)*f)/(d*e)