\(\int \frac {\sqrt {d+e x}}{(f+g x)^{3/2} (a+c x^2)} \, dx\) [107]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 351 \[ \int \frac {\sqrt {d+e x}}{(f+g x)^{3/2} \left (a+c x^2\right )} \, dx=-\frac {2 g \sqrt {d+e x}}{\left (c f^2+a g^2\right ) \sqrt {f+g x}}+\frac {\left (c d f+a e g-\sqrt {-a} \sqrt {c} (e f-d g)\right ) \text {arctanh}\left (\frac {\sqrt {\sqrt {c} f-\sqrt {-a} g} \sqrt {d+e x}}{\sqrt {\sqrt {c} d-\sqrt {-a} e} \sqrt {f+g x}}\right )}{\sqrt {-a} \sqrt {\sqrt {c} d-\sqrt {-a} e} \sqrt {\sqrt {c} f-\sqrt {-a} g} \left (c f^2+a g^2\right )}-\frac {\left (c d f+a e g+\sqrt {-a} \sqrt {c} (e f-d g)\right ) \text {arctanh}\left (\frac {\sqrt {\sqrt {c} f+\sqrt {-a} g} \sqrt {d+e x}}{\sqrt {\sqrt {c} d+\sqrt {-a} e} \sqrt {f+g x}}\right )}{\sqrt {-a} \sqrt {\sqrt {c} d+\sqrt {-a} e} \sqrt {\sqrt {c} f+\sqrt {-a} g} \left (c f^2+a g^2\right )} \] Output:

-2*g*(e*x+d)^(1/2)/(a*g^2+c*f^2)/(g*x+f)^(1/2)+(c*d*f+a*e*g-(-a)^(1/2)*c^( 
1/2)*(-d*g+e*f))*arctanh((c^(1/2)*f-(-a)^(1/2)*g)^(1/2)*(e*x+d)^(1/2)/(c^( 
1/2)*d-(-a)^(1/2)*e)^(1/2)/(g*x+f)^(1/2))/(-a)^(1/2)/(c^(1/2)*d-(-a)^(1/2) 
*e)^(1/2)/(c^(1/2)*f-(-a)^(1/2)*g)^(1/2)/(a*g^2+c*f^2)-(c*d*f+a*e*g+(-a)^( 
1/2)*c^(1/2)*(-d*g+e*f))*arctanh((c^(1/2)*f+(-a)^(1/2)*g)^(1/2)*(e*x+d)^(1 
/2)/(c^(1/2)*d+(-a)^(1/2)*e)^(1/2)/(g*x+f)^(1/2))/(-a)^(1/2)/(c^(1/2)*d+(- 
a)^(1/2)*e)^(1/2)/(c^(1/2)*f+(-a)^(1/2)*g)^(1/2)/(a*g^2+c*f^2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.03 (sec) , antiderivative size = 361, normalized size of antiderivative = 1.03 \[ \int \frac {\sqrt {d+e x}}{(f+g x)^{3/2} \left (a+c x^2\right )} \, dx=-\frac {2 g \sqrt {d+e x}}{\left (c f^2+a g^2\right ) \sqrt {f+g x}}+\frac {i \sqrt {-\left (\left (\sqrt {c} d+i \sqrt {a} e\right ) \left (\sqrt {c} f-i \sqrt {a} g\right )\right )} \arctan \left (\frac {\sqrt {c f^2+a g^2} \sqrt {d+e x}}{\sqrt {-\left (\left (\sqrt {c} d+i \sqrt {a} e\right ) \left (\sqrt {c} f-i \sqrt {a} g\right )\right )} \sqrt {f+g x}}\right )}{\sqrt {a} \left (\sqrt {c} f+i \sqrt {a} g\right ) \sqrt {c f^2+a g^2}}-\frac {i \sqrt {-\left (\left (\sqrt {c} d-i \sqrt {a} e\right ) \left (\sqrt {c} f+i \sqrt {a} g\right )\right )} \arctan \left (\frac {\sqrt {c f^2+a g^2} \sqrt {d+e x}}{\sqrt {-\left (\left (\sqrt {c} d-i \sqrt {a} e\right ) \left (\sqrt {c} f+i \sqrt {a} g\right )\right )} \sqrt {f+g x}}\right )}{\sqrt {a} \left (\sqrt {c} f-i \sqrt {a} g\right ) \sqrt {c f^2+a g^2}} \] Input:

Integrate[Sqrt[d + e*x]/((f + g*x)^(3/2)*(a + c*x^2)),x]
 

Output:

(-2*g*Sqrt[d + e*x])/((c*f^2 + a*g^2)*Sqrt[f + g*x]) + (I*Sqrt[-((Sqrt[c]* 
d + I*Sqrt[a]*e)*(Sqrt[c]*f - I*Sqrt[a]*g))]*ArcTan[(Sqrt[c*f^2 + a*g^2]*S 
qrt[d + e*x])/(Sqrt[-((Sqrt[c]*d + I*Sqrt[a]*e)*(Sqrt[c]*f - I*Sqrt[a]*g)) 
]*Sqrt[f + g*x])])/(Sqrt[a]*(Sqrt[c]*f + I*Sqrt[a]*g)*Sqrt[c*f^2 + a*g^2]) 
 - (I*Sqrt[-((Sqrt[c]*d - I*Sqrt[a]*e)*(Sqrt[c]*f + I*Sqrt[a]*g))]*ArcTan[ 
(Sqrt[c*f^2 + a*g^2]*Sqrt[d + e*x])/(Sqrt[-((Sqrt[c]*d - I*Sqrt[a]*e)*(Sqr 
t[c]*f + I*Sqrt[a]*g))]*Sqrt[f + g*x])])/(Sqrt[a]*(Sqrt[c]*f - I*Sqrt[a]*g 
)*Sqrt[c*f^2 + a*g^2])
 

Rubi [A] (verified)

Time = 0.83 (sec) , antiderivative size = 340, normalized size of antiderivative = 0.97, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {660, 48, 2348, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {d+e x}}{\left (a+c x^2\right ) (f+g x)^{3/2}} \, dx\)

\(\Big \downarrow \) 660

\(\displaystyle \frac {\int \frac {c d f+a e g+c (e f-d g) x}{\sqrt {d+e x} \sqrt {f+g x} \left (c x^2+a\right )}dx}{a g^2+c f^2}-\frac {g (e f-d g) \int \frac {1}{\sqrt {d+e x} (f+g x)^{3/2}}dx}{a g^2+c f^2}\)

\(\Big \downarrow \) 48

\(\displaystyle \frac {\int \frac {c d f+a e g+c (e f-d g) x}{\sqrt {d+e x} \sqrt {f+g x} \left (c x^2+a\right )}dx}{a g^2+c f^2}-\frac {2 g \sqrt {d+e x}}{\sqrt {f+g x} \left (a g^2+c f^2\right )}\)

\(\Big \downarrow \) 2348

\(\displaystyle \frac {\int \left (\frac {\sqrt {-a} (c d f+a e g)-a \sqrt {c} (e f-d g)}{2 a \left (\sqrt {-a}-\sqrt {c} x\right ) \sqrt {d+e x} \sqrt {f+g x}}+\frac {a \sqrt {c} (e f-d g)+\sqrt {-a} (c d f+a e g)}{2 a \left (\sqrt {c} x+\sqrt {-a}\right ) \sqrt {d+e x} \sqrt {f+g x}}\right )dx}{a g^2+c f^2}-\frac {2 g \sqrt {d+e x}}{\sqrt {f+g x} \left (a g^2+c f^2\right )}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {\left (-\sqrt {-a} \sqrt {c} (e f-d g)+a e g+c d f\right ) \text {arctanh}\left (\frac {\sqrt {d+e x} \sqrt {\sqrt {c} f-\sqrt {-a} g}}{\sqrt {f+g x} \sqrt {\sqrt {c} d-\sqrt {-a} e}}\right )}{\sqrt {-a} \sqrt {\sqrt {c} d-\sqrt {-a} e} \sqrt {\sqrt {c} f-\sqrt {-a} g}}-\frac {\left (\sqrt {-a} \sqrt {c} (e f-d g)+a e g+c d f\right ) \text {arctanh}\left (\frac {\sqrt {d+e x} \sqrt {\sqrt {-a} g+\sqrt {c} f}}{\sqrt {f+g x} \sqrt {\sqrt {-a} e+\sqrt {c} d}}\right )}{\sqrt {-a} \sqrt {\sqrt {-a} e+\sqrt {c} d} \sqrt {\sqrt {-a} g+\sqrt {c} f}}}{a g^2+c f^2}-\frac {2 g \sqrt {d+e x}}{\sqrt {f+g x} \left (a g^2+c f^2\right )}\)

Input:

Int[Sqrt[d + e*x]/((f + g*x)^(3/2)*(a + c*x^2)),x]
 

Output:

(-2*g*Sqrt[d + e*x])/((c*f^2 + a*g^2)*Sqrt[f + g*x]) + (((c*d*f + a*e*g - 
Sqrt[-a]*Sqrt[c]*(e*f - d*g))*ArcTanh[(Sqrt[Sqrt[c]*f - Sqrt[-a]*g]*Sqrt[d 
 + e*x])/(Sqrt[Sqrt[c]*d - Sqrt[-a]*e]*Sqrt[f + g*x])])/(Sqrt[-a]*Sqrt[Sqr 
t[c]*d - Sqrt[-a]*e]*Sqrt[Sqrt[c]*f - Sqrt[-a]*g]) - ((c*d*f + a*e*g + Sqr 
t[-a]*Sqrt[c]*(e*f - d*g))*ArcTanh[(Sqrt[Sqrt[c]*f + Sqrt[-a]*g]*Sqrt[d + 
e*x])/(Sqrt[Sqrt[c]*d + Sqrt[-a]*e]*Sqrt[f + g*x])])/(Sqrt[-a]*Sqrt[Sqrt[c 
]*d + Sqrt[-a]*e]*Sqrt[Sqrt[c]*f + Sqrt[-a]*g]))/(c*f^2 + a*g^2)
 

Defintions of rubi rules used

rule 48
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp 
[(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] /; FreeQ[{ 
a, b, c, d, m, n}, x] && EqQ[m + n + 2, 0] && NeQ[m, -1]
 

rule 660
Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_) + (c_.)*(x_ 
)^2), x_Symbol] :> Simp[(-g)*((e*f - d*g)/(c*f^2 + a*g^2))   Int[(d + e*x)^ 
(m - 1)*(f + g*x)^n, x], x] + Simp[1/(c*f^2 + a*g^2)   Int[Simp[c*d*f + a*e 
*g + c*(e*f - d*g)*x, x]*(d + e*x)^(m - 1)*((f + g*x)^(n + 1)/(a + c*x^2)), 
 x], x] /; FreeQ[{a, c, d, e, f, g}, x] &&  !IntegerQ[m] &&  !IntegerQ[n] & 
& GtQ[m, 0] && LtQ[n, -1]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2348
Int[(Px_)*((c_) + (d_.)*(x_))^(m_.)*((e_) + (f_.)*(x_))^(n_.)*((a_.) + (b_. 
)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[Px*(c + d*x)^m*(e + f*x)^ 
n*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && PolyQ[P 
x, x] && (IntegerQ[p] || (IntegerQ[2*p] && IntegerQ[m] && ILtQ[n, 0])) && 
!(IGtQ[m, 0] && IGtQ[n, 0])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(5382\) vs. \(2(279)=558\).

Time = 1.64 (sec) , antiderivative size = 5383, normalized size of antiderivative = 15.34

method result size
default \(\text {Expression too large to display}\) \(5383\)

Input:

int((e*x+d)^(1/2)/(g*x+f)^(3/2)/(c*x^2+a),x,method=_RETURNVERBOSE)
 

Output:

result too large to display
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 5844 vs. \(2 (279) = 558\).

Time = 37.10 (sec) , antiderivative size = 5844, normalized size of antiderivative = 16.65 \[ \int \frac {\sqrt {d+e x}}{(f+g x)^{3/2} \left (a+c x^2\right )} \, dx=\text {Too large to display} \] Input:

integrate((e*x+d)^(1/2)/(g*x+f)^(3/2)/(c*x^2+a),x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F]

\[ \int \frac {\sqrt {d+e x}}{(f+g x)^{3/2} \left (a+c x^2\right )} \, dx=\int \frac {\sqrt {d + e x}}{\left (a + c x^{2}\right ) \left (f + g x\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((e*x+d)**(1/2)/(g*x+f)**(3/2)/(c*x**2+a),x)
 

Output:

Integral(sqrt(d + e*x)/((a + c*x**2)*(f + g*x)**(3/2)), x)
 

Maxima [F]

\[ \int \frac {\sqrt {d+e x}}{(f+g x)^{3/2} \left (a+c x^2\right )} \, dx=\int { \frac {\sqrt {e x + d}}{{\left (c x^{2} + a\right )} {\left (g x + f\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((e*x+d)^(1/2)/(g*x+f)^(3/2)/(c*x^2+a),x, algorithm="maxima")
 

Output:

integrate(sqrt(e*x + d)/((c*x^2 + a)*(g*x + f)^(3/2)), x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {\sqrt {d+e x}}{(f+g x)^{3/2} \left (a+c x^2\right )} \, dx=\text {Timed out} \] Input:

integrate((e*x+d)^(1/2)/(g*x+f)^(3/2)/(c*x^2+a),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {d+e x}}{(f+g x)^{3/2} \left (a+c x^2\right )} \, dx=\int \frac {\sqrt {d+e\,x}}{{\left (f+g\,x\right )}^{3/2}\,\left (c\,x^2+a\right )} \,d x \] Input:

int((d + e*x)^(1/2)/((f + g*x)^(3/2)*(a + c*x^2)),x)
 

Output:

int((d + e*x)^(1/2)/((f + g*x)^(3/2)*(a + c*x^2)), x)
 

Reduce [F]

\[ \int \frac {\sqrt {d+e x}}{(f+g x)^{3/2} \left (a+c x^2\right )} \, dx=\int \frac {\sqrt {e x +d}}{\sqrt {g x +f}\, a f +\sqrt {g x +f}\, a g x +\sqrt {g x +f}\, c f \,x^{2}+\sqrt {g x +f}\, c g \,x^{3}}d x \] Input:

int((e*x+d)^(1/2)/(g*x+f)^(3/2)/(c*x^2+a),x)
                                                                                    
                                                                                    
 

Output:

int(sqrt(d + e*x)/(sqrt(f + g*x)*a*f + sqrt(f + g*x)*a*g*x + sqrt(f + g*x) 
*c*f*x**2 + sqrt(f + g*x)*c*g*x**3),x)