\(\int \frac {\sqrt {a+c x^2}}{\sqrt {f+g x}} \, dx\) [120]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 462 \[ \int \frac {\sqrt {a+c x^2}}{\sqrt {f+g x}} \, dx=\frac {2 \sqrt {f+g x} \sqrt {a+c x^2}}{3 g}+\frac {4 \sqrt [4]{c} f \left (\sqrt {c} f-\sqrt {-a} g\right ) \sqrt {\sqrt {c} f+\sqrt {-a} g} \sqrt {1-\frac {\sqrt {c} (f+g x)}{\sqrt {c} f-\sqrt {-a} g}} \sqrt {1-\frac {\sqrt {c} (f+g x)}{\sqrt {c} f+\sqrt {-a} g}} E\left (\arcsin \left (\frac {\sqrt [4]{c} \sqrt {f+g x}}{\sqrt {\sqrt {c} f+\sqrt {-a} g}}\right )|\frac {\sqrt {c} f+\sqrt {-a} g}{\sqrt {c} f-\sqrt {-a} g}\right )}{3 g^3 \sqrt {a+c x^2}}+\frac {4 \sqrt {-a} \left (\sqrt {c} f-\sqrt {-a} g\right ) \sqrt {\sqrt {c} f+\sqrt {-a} g} \sqrt {1-\frac {\sqrt {c} (f+g x)}{\sqrt {c} f-\sqrt {-a} g}} \sqrt {1-\frac {\sqrt {c} (f+g x)}{\sqrt {c} f+\sqrt {-a} g}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{c} \sqrt {f+g x}}{\sqrt {\sqrt {c} f+\sqrt {-a} g}}\right ),\frac {\sqrt {c} f+\sqrt {-a} g}{\sqrt {c} f-\sqrt {-a} g}\right )}{3 \sqrt [4]{c} g^2 \sqrt {a+c x^2}} \] Output:

2/3*(g*x+f)^(1/2)*(c*x^2+a)^(1/2)/g+4/3*c^(1/4)*f*(c^(1/2)*f-(-a)^(1/2)*g) 
*(c^(1/2)*f+(-a)^(1/2)*g)^(1/2)*(1-c^(1/2)*(g*x+f)/(c^(1/2)*f-(-a)^(1/2)*g 
))^(1/2)*(1-c^(1/2)*(g*x+f)/(c^(1/2)*f+(-a)^(1/2)*g))^(1/2)*EllipticE(c^(1 
/4)*(g*x+f)^(1/2)/(c^(1/2)*f+(-a)^(1/2)*g)^(1/2),((c^(1/2)*f+(-a)^(1/2)*g) 
/(c^(1/2)*f-(-a)^(1/2)*g))^(1/2))/g^3/(c*x^2+a)^(1/2)+4/3*(-a)^(1/2)*(c^(1 
/2)*f-(-a)^(1/2)*g)*(c^(1/2)*f+(-a)^(1/2)*g)^(1/2)*(1-c^(1/2)*(g*x+f)/(c^( 
1/2)*f-(-a)^(1/2)*g))^(1/2)*(1-c^(1/2)*(g*x+f)/(c^(1/2)*f+(-a)^(1/2)*g))^( 
1/2)*EllipticF(c^(1/4)*(g*x+f)^(1/2)/(c^(1/2)*f+(-a)^(1/2)*g)^(1/2),((c^(1 
/2)*f+(-a)^(1/2)*g)/(c^(1/2)*f-(-a)^(1/2)*g))^(1/2))/c^(1/4)/g^2/(c*x^2+a) 
^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 23.31 (sec) , antiderivative size = 456, normalized size of antiderivative = 0.99 \[ \int \frac {\sqrt {a+c x^2}}{\sqrt {f+g x}} \, dx=\frac {2 \sqrt {f+g x} \left (g^2 \left (a+c x^2\right )-\frac {2 \left (f g^2 \sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}} \left (a+c x^2\right )+\sqrt {c} f \left (-i \sqrt {c} f+\sqrt {a} g\right ) \sqrt {\frac {g \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{f+g x}} \sqrt {-\frac {\frac {i \sqrt {a} g}{\sqrt {c}}-g x}{f+g x}} (f+g x)^{3/2} E\left (i \text {arcsinh}\left (\frac {\sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}}}{\sqrt {f+g x}}\right )|\frac {\sqrt {c} f-i \sqrt {a} g}{\sqrt {c} f+i \sqrt {a} g}\right )-\sqrt {a} g \left (\sqrt {c} f+i \sqrt {a} g\right ) \sqrt {\frac {g \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{f+g x}} \sqrt {-\frac {\frac {i \sqrt {a} g}{\sqrt {c}}-g x}{f+g x}} (f+g x)^{3/2} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}}}{\sqrt {f+g x}}\right ),\frac {\sqrt {c} f-i \sqrt {a} g}{\sqrt {c} f+i \sqrt {a} g}\right )\right )}{\sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}} (f+g x)}\right )}{3 g^3 \sqrt {a+c x^2}} \] Input:

Integrate[Sqrt[a + c*x^2]/Sqrt[f + g*x],x]
 

Output:

(2*Sqrt[f + g*x]*(g^2*(a + c*x^2) - (2*(f*g^2*Sqrt[-f - (I*Sqrt[a]*g)/Sqrt 
[c]]*(a + c*x^2) + Sqrt[c]*f*((-I)*Sqrt[c]*f + Sqrt[a]*g)*Sqrt[(g*((I*Sqrt 
[a])/Sqrt[c] + x))/(f + g*x)]*Sqrt[-(((I*Sqrt[a]*g)/Sqrt[c] - g*x)/(f + g* 
x))]*(f + g*x)^(3/2)*EllipticE[I*ArcSinh[Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]]/ 
Sqrt[f + g*x]], (Sqrt[c]*f - I*Sqrt[a]*g)/(Sqrt[c]*f + I*Sqrt[a]*g)] - Sqr 
t[a]*g*(Sqrt[c]*f + I*Sqrt[a]*g)*Sqrt[(g*((I*Sqrt[a])/Sqrt[c] + x))/(f + g 
*x)]*Sqrt[-(((I*Sqrt[a]*g)/Sqrt[c] - g*x)/(f + g*x))]*(f + g*x)^(3/2)*Elli 
pticF[I*ArcSinh[Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]]/Sqrt[f + g*x]], (Sqrt[c]* 
f - I*Sqrt[a]*g)/(Sqrt[c]*f + I*Sqrt[a]*g)]))/(Sqrt[-f - (I*Sqrt[a]*g)/Sqr 
t[c]]*(f + g*x))))/(3*g^3*Sqrt[a + c*x^2])
 

Rubi [A] (verified)

Time = 0.71 (sec) , antiderivative size = 639, normalized size of antiderivative = 1.38, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {493, 599, 25, 1511, 1416, 1509}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+c x^2}}{\sqrt {f+g x}} \, dx\)

\(\Big \downarrow \) 493

\(\displaystyle \frac {2 \int \frac {a g-c f x}{\sqrt {f+g x} \sqrt {c x^2+a}}dx}{3 g}+\frac {2 \sqrt {a+c x^2} \sqrt {f+g x}}{3 g}\)

\(\Big \downarrow \) 599

\(\displaystyle \frac {2 \sqrt {a+c x^2} \sqrt {f+g x}}{3 g}-\frac {4 \int -\frac {c f^2-c (f+g x) f+a g^2}{\sqrt {\frac {c f^2}{g^2}-\frac {2 c (f+g x) f}{g^2}+\frac {c (f+g x)^2}{g^2}+a}}d\sqrt {f+g x}}{3 g^3}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {4 \int \frac {c f^2-c (f+g x) f+a g^2}{\sqrt {\frac {c f^2}{g^2}-\frac {2 c (f+g x) f}{g^2}+\frac {c (f+g x)^2}{g^2}+a}}d\sqrt {f+g x}}{3 g^3}+\frac {2 \sqrt {a+c x^2} \sqrt {f+g x}}{3 g}\)

\(\Big \downarrow \) 1511

\(\displaystyle \frac {2 \sqrt {a+c x^2} \sqrt {f+g x}}{3 g}-\frac {4 \left (\sqrt {a g^2+c f^2} \left (\sqrt {c} f-\sqrt {a g^2+c f^2}\right ) \int \frac {1}{\sqrt {\frac {c f^2}{g^2}-\frac {2 c (f+g x) f}{g^2}+\frac {c (f+g x)^2}{g^2}+a}}d\sqrt {f+g x}-\sqrt {c} f \sqrt {a g^2+c f^2} \int \frac {1-\frac {\sqrt {c} (f+g x)}{\sqrt {c f^2+a g^2}}}{\sqrt {\frac {c f^2}{g^2}-\frac {2 c (f+g x) f}{g^2}+\frac {c (f+g x)^2}{g^2}+a}}d\sqrt {f+g x}\right )}{3 g^3}\)

\(\Big \downarrow \) 1416

\(\displaystyle \frac {2 \sqrt {a+c x^2} \sqrt {f+g x}}{3 g}-\frac {4 \left (\frac {\left (a g^2+c f^2\right )^{3/4} \left (\sqrt {c} f-\sqrt {a g^2+c f^2}\right ) \left (\frac {\sqrt {c} (f+g x)}{\sqrt {a g^2+c f^2}}+1\right ) \sqrt {\frac {a+\frac {c f^2}{g^2}-\frac {2 c f (f+g x)}{g^2}+\frac {c (f+g x)^2}{g^2}}{\left (a+\frac {c f^2}{g^2}\right ) \left (\frac {\sqrt {c} (f+g x)}{\sqrt {a g^2+c f^2}}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {f+g x}}{\sqrt [4]{c f^2+a g^2}}\right ),\frac {1}{2} \left (\frac {\sqrt {c} f}{\sqrt {c f^2+a g^2}}+1\right )\right )}{2 \sqrt [4]{c} \sqrt {a+\frac {c f^2}{g^2}-\frac {2 c f (f+g x)}{g^2}+\frac {c (f+g x)^2}{g^2}}}-\sqrt {c} f \sqrt {a g^2+c f^2} \int \frac {1-\frac {\sqrt {c} (f+g x)}{\sqrt {c f^2+a g^2}}}{\sqrt {\frac {c f^2}{g^2}-\frac {2 c (f+g x) f}{g^2}+\frac {c (f+g x)^2}{g^2}+a}}d\sqrt {f+g x}\right )}{3 g^3}\)

\(\Big \downarrow \) 1509

\(\displaystyle \frac {2 \sqrt {a+c x^2} \sqrt {f+g x}}{3 g}-\frac {4 \left (\frac {\left (a g^2+c f^2\right )^{3/4} \left (\sqrt {c} f-\sqrt {a g^2+c f^2}\right ) \left (\frac {\sqrt {c} (f+g x)}{\sqrt {a g^2+c f^2}}+1\right ) \sqrt {\frac {a+\frac {c f^2}{g^2}-\frac {2 c f (f+g x)}{g^2}+\frac {c (f+g x)^2}{g^2}}{\left (a+\frac {c f^2}{g^2}\right ) \left (\frac {\sqrt {c} (f+g x)}{\sqrt {a g^2+c f^2}}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {f+g x}}{\sqrt [4]{c f^2+a g^2}}\right ),\frac {1}{2} \left (\frac {\sqrt {c} f}{\sqrt {c f^2+a g^2}}+1\right )\right )}{2 \sqrt [4]{c} \sqrt {a+\frac {c f^2}{g^2}-\frac {2 c f (f+g x)}{g^2}+\frac {c (f+g x)^2}{g^2}}}-\sqrt {c} f \sqrt {a g^2+c f^2} \left (\frac {\sqrt [4]{a g^2+c f^2} \left (\frac {\sqrt {c} (f+g x)}{\sqrt {a g^2+c f^2}}+1\right ) \sqrt {\frac {a+\frac {c f^2}{g^2}-\frac {2 c f (f+g x)}{g^2}+\frac {c (f+g x)^2}{g^2}}{\left (a+\frac {c f^2}{g^2}\right ) \left (\frac {\sqrt {c} (f+g x)}{\sqrt {a g^2+c f^2}}+1\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {f+g x}}{\sqrt [4]{c f^2+a g^2}}\right )|\frac {1}{2} \left (\frac {\sqrt {c} f}{\sqrt {c f^2+a g^2}}+1\right )\right )}{\sqrt [4]{c} \sqrt {a+\frac {c f^2}{g^2}-\frac {2 c f (f+g x)}{g^2}+\frac {c (f+g x)^2}{g^2}}}-\frac {\sqrt {f+g x} \sqrt {a+\frac {c f^2}{g^2}-\frac {2 c f (f+g x)}{g^2}+\frac {c (f+g x)^2}{g^2}}}{\left (a+\frac {c f^2}{g^2}\right ) \left (\frac {\sqrt {c} (f+g x)}{\sqrt {a g^2+c f^2}}+1\right )}\right )\right )}{3 g^3}\)

Input:

Int[Sqrt[a + c*x^2]/Sqrt[f + g*x],x]
 

Output:

(2*Sqrt[f + g*x]*Sqrt[a + c*x^2])/(3*g) - (4*(-(Sqrt[c]*f*Sqrt[c*f^2 + a*g 
^2]*(-((Sqrt[f + g*x]*Sqrt[a + (c*f^2)/g^2 - (2*c*f*(f + g*x))/g^2 + (c*(f 
 + g*x)^2)/g^2])/((a + (c*f^2)/g^2)*(1 + (Sqrt[c]*(f + g*x))/Sqrt[c*f^2 + 
a*g^2]))) + ((c*f^2 + a*g^2)^(1/4)*(1 + (Sqrt[c]*(f + g*x))/Sqrt[c*f^2 + a 
*g^2])*Sqrt[(a + (c*f^2)/g^2 - (2*c*f*(f + g*x))/g^2 + (c*(f + g*x)^2)/g^2 
)/((a + (c*f^2)/g^2)*(1 + (Sqrt[c]*(f + g*x))/Sqrt[c*f^2 + a*g^2])^2)]*Ell 
ipticE[2*ArcTan[(c^(1/4)*Sqrt[f + g*x])/(c*f^2 + a*g^2)^(1/4)], (1 + (Sqrt 
[c]*f)/Sqrt[c*f^2 + a*g^2])/2])/(c^(1/4)*Sqrt[a + (c*f^2)/g^2 - (2*c*f*(f 
+ g*x))/g^2 + (c*(f + g*x)^2)/g^2]))) + ((c*f^2 + a*g^2)^(3/4)*(Sqrt[c]*f 
- Sqrt[c*f^2 + a*g^2])*(1 + (Sqrt[c]*(f + g*x))/Sqrt[c*f^2 + a*g^2])*Sqrt[ 
(a + (c*f^2)/g^2 - (2*c*f*(f + g*x))/g^2 + (c*(f + g*x)^2)/g^2)/((a + (c*f 
^2)/g^2)*(1 + (Sqrt[c]*(f + g*x))/Sqrt[c*f^2 + a*g^2])^2)]*EllipticF[2*Arc 
Tan[(c^(1/4)*Sqrt[f + g*x])/(c*f^2 + a*g^2)^(1/4)], (1 + (Sqrt[c]*f)/Sqrt[ 
c*f^2 + a*g^2])/2])/(2*c^(1/4)*Sqrt[a + (c*f^2)/g^2 - (2*c*f*(f + g*x))/g^ 
2 + (c*(f + g*x)^2)/g^2])))/(3*g^3)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 493
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[ 
(c + d*x)^(n + 1)*((a + b*x^2)^p/(d*(n + 2*p + 1))), x] + Simp[2*(p/(d*(n + 
 2*p + 1)))   Int[(c + d*x)^n*(a + b*x^2)^(p - 1)*(a*d - b*c*x), x], x] /; 
FreeQ[{a, b, c, d, n}, x] && GtQ[p, 0] && NeQ[n + 2*p + 1, 0] && ( !Rationa 
lQ[n] || LtQ[n, 1]) &&  !ILtQ[n + 2*p, 0] && IntQuadraticQ[a, 0, b, c, d, n 
, p, x]
 

rule 599
Int[((A_.) + (B_.)*(x_))/(Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2] 
), x_Symbol] :> Simp[-2/d^2   Subst[Int[(B*c - A*d - B*x^2)/Sqrt[(b*c^2 + a 
*d^2)/d^2 - 2*b*c*(x^2/d^2) + b*(x^4/d^2)], x], x, Sqrt[c + d*x]], x] /; Fr 
eeQ[{a, b, c, d, A, B}, x] && PosQ[b/a]
 

rule 1416
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c 
/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/ 
(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c)) 
], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]
 

rule 1509
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q 
^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2* 
x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2 
/(4*c))], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 
- 4*a*c, 0] && PosQ[c/a]
 

rule 1511
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 2]}, Simp[(e + d*q)/q   Int[1/Sqrt[a + b*x^2 + c*x^ 
4], x], x] - Simp[e/q   Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x] /; 
NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && Pos 
Q[c/a]
 
Maple [A] (verified)

Time = 1.55 (sec) , antiderivative size = 584, normalized size of antiderivative = 1.26

method result size
risch \(\frac {2 \sqrt {g x +f}\, \sqrt {c \,x^{2}+a}}{3 g}+\frac {2 \left (-\frac {2 c f \left (\frac {f}{g}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}}\, \left (\left (-\frac {f}{g}-\frac {\sqrt {-a c}}{c}\right ) \operatorname {EllipticE}\left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\right )+\frac {\sqrt {-a c}\, \operatorname {EllipticF}\left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\right )}{c}\right )}{\sqrt {c g \,x^{3}+c f \,x^{2}+a g x +a f}}+\frac {2 a g \left (\frac {f}{g}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\right )}{\sqrt {c g \,x^{3}+c f \,x^{2}+a g x +a f}}\right ) \sqrt {\left (g x +f \right ) \left (c \,x^{2}+a \right )}}{3 g \sqrt {g x +f}\, \sqrt {c \,x^{2}+a}}\) \(584\)
elliptic \(\frac {\sqrt {\left (g x +f \right ) \left (c \,x^{2}+a \right )}\, \left (\frac {2 \sqrt {c g \,x^{3}+c f \,x^{2}+a g x +a f}}{3 g}+\frac {4 a \left (\frac {f}{g}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\right )}{3 \sqrt {c g \,x^{3}+c f \,x^{2}+a g x +a f}}-\frac {4 c f \left (\frac {f}{g}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}}\, \left (\left (-\frac {f}{g}-\frac {\sqrt {-a c}}{c}\right ) \operatorname {EllipticE}\left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\right )+\frac {\sqrt {-a c}\, \operatorname {EllipticF}\left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\right )}{c}\right )}{3 g \sqrt {c g \,x^{3}+c f \,x^{2}+a g x +a f}}\right )}{\sqrt {g x +f}\, \sqrt {c \,x^{2}+a}}\) \(587\)
default \(-\frac {2 \sqrt {c \,x^{2}+a}\, \sqrt {g x +f}\, \left (2 \sqrt {-a c}\, \sqrt {-\frac {\left (g x +f \right ) c}{\sqrt {-a c}\, g -c f}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) g}{\sqrt {-a c}\, g +c f}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) g}{\sqrt {-a c}\, g -c f}}\, \operatorname {EllipticF}\left (\sqrt {-\frac {\left (g x +f \right ) c}{\sqrt {-a c}\, g -c f}}, \sqrt {-\frac {\sqrt {-a c}\, g -c f}{\sqrt {-a c}\, g +c f}}\right ) a \,g^{3}+2 \sqrt {-a c}\, \sqrt {-\frac {\left (g x +f \right ) c}{\sqrt {-a c}\, g -c f}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) g}{\sqrt {-a c}\, g +c f}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) g}{\sqrt {-a c}\, g -c f}}\, \operatorname {EllipticF}\left (\sqrt {-\frac {\left (g x +f \right ) c}{\sqrt {-a c}\, g -c f}}, \sqrt {-\frac {\sqrt {-a c}\, g -c f}{\sqrt {-a c}\, g +c f}}\right ) c \,f^{2} g -2 a c \sqrt {-\frac {\left (g x +f \right ) c}{\sqrt {-a c}\, g -c f}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) g}{\sqrt {-a c}\, g +c f}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) g}{\sqrt {-a c}\, g -c f}}\, \operatorname {EllipticE}\left (\sqrt {-\frac {\left (g x +f \right ) c}{\sqrt {-a c}\, g -c f}}, \sqrt {-\frac {\sqrt {-a c}\, g -c f}{\sqrt {-a c}\, g +c f}}\right ) f \,g^{2}-2 \sqrt {-\frac {\left (g x +f \right ) c}{\sqrt {-a c}\, g -c f}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) g}{\sqrt {-a c}\, g +c f}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) g}{\sqrt {-a c}\, g -c f}}\, \operatorname {EllipticE}\left (\sqrt {-\frac {\left (g x +f \right ) c}{\sqrt {-a c}\, g -c f}}, \sqrt {-\frac {\sqrt {-a c}\, g -c f}{\sqrt {-a c}\, g +c f}}\right ) c^{2} f^{3}-c^{2} g^{3} x^{3}-c^{2} f \,g^{2} x^{2}-a c \,g^{3} x -a c f \,g^{2}\right )}{3 c \left (c g \,x^{3}+c f \,x^{2}+a g x +a f \right ) g^{3}}\) \(688\)

Input:

int((c*x^2+a)^(1/2)/(g*x+f)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

2/3*(g*x+f)^(1/2)*(c*x^2+a)^(1/2)/g+2/3/g*(-2*c*f*(f/g-(-a*c)^(1/2)/c)*((x 
+f/g)/(f/g-(-a*c)^(1/2)/c))^(1/2)*((x-(-a*c)^(1/2)/c)/(-f/g-(-a*c)^(1/2)/c 
))^(1/2)*((x+(-a*c)^(1/2)/c)/(-f/g+(-a*c)^(1/2)/c))^(1/2)/(c*g*x^3+c*f*x^2 
+a*g*x+a*f)^(1/2)*((-f/g-(-a*c)^(1/2)/c)*EllipticE(((x+f/g)/(f/g-(-a*c)^(1 
/2)/c))^(1/2),((-f/g+(-a*c)^(1/2)/c)/(-f/g-(-a*c)^(1/2)/c))^(1/2))+(-a*c)^ 
(1/2)/c*EllipticF(((x+f/g)/(f/g-(-a*c)^(1/2)/c))^(1/2),((-f/g+(-a*c)^(1/2) 
/c)/(-f/g-(-a*c)^(1/2)/c))^(1/2)))+2*a*g*(f/g-(-a*c)^(1/2)/c)*((x+f/g)/(f/ 
g-(-a*c)^(1/2)/c))^(1/2)*((x-(-a*c)^(1/2)/c)/(-f/g-(-a*c)^(1/2)/c))^(1/2)* 
((x+(-a*c)^(1/2)/c)/(-f/g+(-a*c)^(1/2)/c))^(1/2)/(c*g*x^3+c*f*x^2+a*g*x+a* 
f)^(1/2)*EllipticF(((x+f/g)/(f/g-(-a*c)^(1/2)/c))^(1/2),((-f/g+(-a*c)^(1/2 
)/c)/(-f/g-(-a*c)^(1/2)/c))^(1/2)))*((g*x+f)*(c*x^2+a))^(1/2)/(g*x+f)^(1/2 
)/(c*x^2+a)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 208, normalized size of antiderivative = 0.45 \[ \int \frac {\sqrt {a+c x^2}}{\sqrt {f+g x}} \, dx=\frac {2 \, {\left (6 \, \sqrt {c g} c f g {\rm weierstrassZeta}\left (\frac {4 \, {\left (c f^{2} - 3 \, a g^{2}\right )}}{3 \, c g^{2}}, -\frac {8 \, {\left (c f^{3} + 9 \, a f g^{2}\right )}}{27 \, c g^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c f^{2} - 3 \, a g^{2}\right )}}{3 \, c g^{2}}, -\frac {8 \, {\left (c f^{3} + 9 \, a f g^{2}\right )}}{27 \, c g^{3}}, \frac {3 \, g x + f}{3 \, g}\right )\right ) + 3 \, \sqrt {c x^{2} + a} \sqrt {g x + f} c g^{2} + 2 \, {\left (c f^{2} + 3 \, a g^{2}\right )} \sqrt {c g} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c f^{2} - 3 \, a g^{2}\right )}}{3 \, c g^{2}}, -\frac {8 \, {\left (c f^{3} + 9 \, a f g^{2}\right )}}{27 \, c g^{3}}, \frac {3 \, g x + f}{3 \, g}\right )\right )}}{9 \, c g^{3}} \] Input:

integrate((c*x^2+a)^(1/2)/(g*x+f)^(1/2),x, algorithm="fricas")
 

Output:

2/9*(6*sqrt(c*g)*c*f*g*weierstrassZeta(4/3*(c*f^2 - 3*a*g^2)/(c*g^2), -8/2 
7*(c*f^3 + 9*a*f*g^2)/(c*g^3), weierstrassPInverse(4/3*(c*f^2 - 3*a*g^2)/( 
c*g^2), -8/27*(c*f^3 + 9*a*f*g^2)/(c*g^3), 1/3*(3*g*x + f)/g)) + 3*sqrt(c* 
x^2 + a)*sqrt(g*x + f)*c*g^2 + 2*(c*f^2 + 3*a*g^2)*sqrt(c*g)*weierstrassPI 
nverse(4/3*(c*f^2 - 3*a*g^2)/(c*g^2), -8/27*(c*f^3 + 9*a*f*g^2)/(c*g^3), 1 
/3*(3*g*x + f)/g))/(c*g^3)
 

Sympy [F]

\[ \int \frac {\sqrt {a+c x^2}}{\sqrt {f+g x}} \, dx=\int \frac {\sqrt {a + c x^{2}}}{\sqrt {f + g x}}\, dx \] Input:

integrate((c*x**2+a)**(1/2)/(g*x+f)**(1/2),x)
 

Output:

Integral(sqrt(a + c*x**2)/sqrt(f + g*x), x)
 

Maxima [F]

\[ \int \frac {\sqrt {a+c x^2}}{\sqrt {f+g x}} \, dx=\int { \frac {\sqrt {c x^{2} + a}}{\sqrt {g x + f}} \,d x } \] Input:

integrate((c*x^2+a)^(1/2)/(g*x+f)^(1/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(c*x^2 + a)/sqrt(g*x + f), x)
 

Giac [F]

\[ \int \frac {\sqrt {a+c x^2}}{\sqrt {f+g x}} \, dx=\int { \frac {\sqrt {c x^{2} + a}}{\sqrt {g x + f}} \,d x } \] Input:

integrate((c*x^2+a)^(1/2)/(g*x+f)^(1/2),x, algorithm="giac")
 

Output:

integrate(sqrt(c*x^2 + a)/sqrt(g*x + f), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+c x^2}}{\sqrt {f+g x}} \, dx=\int \frac {\sqrt {c\,x^2+a}}{\sqrt {f+g\,x}} \,d x \] Input:

int((a + c*x^2)^(1/2)/(f + g*x)^(1/2),x)
 

Output:

int((a + c*x^2)^(1/2)/(f + g*x)^(1/2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {a+c x^2}}{\sqrt {f+g x}} \, dx=\int \frac {\sqrt {g x +f}\, \sqrt {c \,x^{2}+a}}{g x +f}d x \] Input:

int((c*x^2+a)^(1/2)/(g*x+f)^(1/2),x)
 

Output:

int((sqrt(f + g*x)*sqrt(a + c*x**2))/(f + g*x),x)