\(\int \frac {d+e x}{\sqrt {f+g x} \sqrt {a+c x^2}} \, dx\) [135]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 424 \[ \int \frac {d+e x}{\sqrt {f+g x} \sqrt {a+c x^2}} \, dx=-\frac {2 e \left (\sqrt {c} f-\sqrt {-a} g\right ) \sqrt {\sqrt {c} f+\sqrt {-a} g} \sqrt {1-\frac {\sqrt {c} (f+g x)}{\sqrt {c} f-\sqrt {-a} g}} \sqrt {1-\frac {\sqrt {c} (f+g x)}{\sqrt {c} f+\sqrt {-a} g}} E\left (\arcsin \left (\frac {\sqrt [4]{c} \sqrt {f+g x}}{\sqrt {\sqrt {c} f+\sqrt {-a} g}}\right )|\frac {\sqrt {c} f+\sqrt {-a} g}{\sqrt {c} f-\sqrt {-a} g}\right )}{c^{3/4} g^2 \sqrt {a+c x^2}}+\frac {2 \left (\sqrt {c} d-\sqrt {-a} e\right ) \sqrt {\sqrt {c} f+\sqrt {-a} g} \sqrt {1-\frac {\sqrt {c} (f+g x)}{\sqrt {c} f-\sqrt {-a} g}} \sqrt {1-\frac {\sqrt {c} (f+g x)}{\sqrt {c} f+\sqrt {-a} g}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{c} \sqrt {f+g x}}{\sqrt {\sqrt {c} f+\sqrt {-a} g}}\right ),\frac {\sqrt {c} f+\sqrt {-a} g}{\sqrt {c} f-\sqrt {-a} g}\right )}{c^{3/4} g \sqrt {a+c x^2}} \] Output:

-2*e*(c^(1/2)*f-(-a)^(1/2)*g)*(c^(1/2)*f+(-a)^(1/2)*g)^(1/2)*(1-c^(1/2)*(g 
*x+f)/(c^(1/2)*f-(-a)^(1/2)*g))^(1/2)*(1-c^(1/2)*(g*x+f)/(c^(1/2)*f+(-a)^( 
1/2)*g))^(1/2)*EllipticE(c^(1/4)*(g*x+f)^(1/2)/(c^(1/2)*f+(-a)^(1/2)*g)^(1 
/2),((c^(1/2)*f+(-a)^(1/2)*g)/(c^(1/2)*f-(-a)^(1/2)*g))^(1/2))/c^(3/4)/g^2 
/(c*x^2+a)^(1/2)+2*(c^(1/2)*d-(-a)^(1/2)*e)*(c^(1/2)*f+(-a)^(1/2)*g)^(1/2) 
*(1-c^(1/2)*(g*x+f)/(c^(1/2)*f-(-a)^(1/2)*g))^(1/2)*(1-c^(1/2)*(g*x+f)/(c^ 
(1/2)*f+(-a)^(1/2)*g))^(1/2)*EllipticF(c^(1/4)*(g*x+f)^(1/2)/(c^(1/2)*f+(- 
a)^(1/2)*g)^(1/2),((c^(1/2)*f+(-a)^(1/2)*g)/(c^(1/2)*f-(-a)^(1/2)*g))^(1/2 
))/c^(3/4)/g/(c*x^2+a)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 23.03 (sec) , antiderivative size = 439, normalized size of antiderivative = 1.04 \[ \int \frac {d+e x}{\sqrt {f+g x} \sqrt {a+c x^2}} \, dx=-\frac {2 \left (-e g^2 \sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}} \left (a+c x^2\right )+i \sqrt {c} e \left (\sqrt {c} f+i \sqrt {a} g\right ) \sqrt {\frac {g \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{f+g x}} \sqrt {-\frac {\frac {i \sqrt {a} g}{\sqrt {c}}-g x}{f+g x}} (f+g x)^{3/2} E\left (i \text {arcsinh}\left (\frac {\sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}}}{\sqrt {f+g x}}\right )|\frac {\sqrt {c} f-i \sqrt {a} g}{\sqrt {c} f+i \sqrt {a} g}\right )+\sqrt {c} \left (-i \sqrt {c} d+\sqrt {a} e\right ) g \sqrt {\frac {g \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{f+g x}} \sqrt {-\frac {\frac {i \sqrt {a} g}{\sqrt {c}}-g x}{f+g x}} (f+g x)^{3/2} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}}}{\sqrt {f+g x}}\right ),\frac {\sqrt {c} f-i \sqrt {a} g}{\sqrt {c} f+i \sqrt {a} g}\right )\right )}{c g^2 \sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}} \sqrt {f+g x} \sqrt {a+c x^2}} \] Input:

Integrate[(d + e*x)/(Sqrt[f + g*x]*Sqrt[a + c*x^2]),x]
 

Output:

(-2*(-(e*g^2*Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]]*(a + c*x^2)) + I*Sqrt[c]*e*( 
Sqrt[c]*f + I*Sqrt[a]*g)*Sqrt[(g*((I*Sqrt[a])/Sqrt[c] + x))/(f + g*x)]*Sqr 
t[-(((I*Sqrt[a]*g)/Sqrt[c] - g*x)/(f + g*x))]*(f + g*x)^(3/2)*EllipticE[I* 
ArcSinh[Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]]/Sqrt[f + g*x]], (Sqrt[c]*f - I*Sq 
rt[a]*g)/(Sqrt[c]*f + I*Sqrt[a]*g)] + Sqrt[c]*((-I)*Sqrt[c]*d + Sqrt[a]*e) 
*g*Sqrt[(g*((I*Sqrt[a])/Sqrt[c] + x))/(f + g*x)]*Sqrt[-(((I*Sqrt[a]*g)/Sqr 
t[c] - g*x)/(f + g*x))]*(f + g*x)^(3/2)*EllipticF[I*ArcSinh[Sqrt[-f - (I*S 
qrt[a]*g)/Sqrt[c]]/Sqrt[f + g*x]], (Sqrt[c]*f - I*Sqrt[a]*g)/(Sqrt[c]*f + 
I*Sqrt[a]*g)]))/(c*g^2*Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]]*Sqrt[f + g*x]*Sqrt 
[a + c*x^2])
 

Rubi [A] (warning: unable to verify)

Time = 1.15 (sec) , antiderivative size = 614, normalized size of antiderivative = 1.45, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {599, 1511, 1416, 1509}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {d+e x}{\sqrt {a+c x^2} \sqrt {f+g x}} \, dx\)

\(\Big \downarrow \) 599

\(\displaystyle -\frac {2 \int \frac {e f-d g-e (f+g x)}{\sqrt {\frac {c f^2}{g^2}-\frac {2 c (f+g x) f}{g^2}+\frac {c (f+g x)^2}{g^2}+a}}d\sqrt {f+g x}}{g^2}\)

\(\Big \downarrow \) 1511

\(\displaystyle -\frac {2 \left (\frac {e \sqrt {a g^2+c f^2} \int \frac {1-\frac {\sqrt {c} (f+g x)}{\sqrt {c f^2+a g^2}}}{\sqrt {\frac {c f^2}{g^2}-\frac {2 c (f+g x) f}{g^2}+\frac {c (f+g x)^2}{g^2}+a}}d\sqrt {f+g x}}{\sqrt {c}}-\left (d g-e \left (f-\frac {\sqrt {a g^2+c f^2}}{\sqrt {c}}\right )\right ) \int \frac {1}{\sqrt {\frac {c f^2}{g^2}-\frac {2 c (f+g x) f}{g^2}+\frac {c (f+g x)^2}{g^2}+a}}d\sqrt {f+g x}\right )}{g^2}\)

\(\Big \downarrow \) 1416

\(\displaystyle -\frac {2 \left (\frac {e \sqrt {a g^2+c f^2} \int \frac {1-\frac {\sqrt {c} (f+g x)}{\sqrt {c f^2+a g^2}}}{\sqrt {\frac {c f^2}{g^2}-\frac {2 c (f+g x) f}{g^2}+\frac {c (f+g x)^2}{g^2}+a}}d\sqrt {f+g x}}{\sqrt {c}}-\frac {\sqrt [4]{a g^2+c f^2} \left (\frac {\sqrt {c} (f+g x)}{\sqrt {a g^2+c f^2}}+1\right ) \sqrt {\frac {a+\frac {c f^2}{g^2}-\frac {2 c f (f+g x)}{g^2}+\frac {c (f+g x)^2}{g^2}}{\left (a+\frac {c f^2}{g^2}\right ) \left (\frac {\sqrt {c} (f+g x)}{\sqrt {a g^2+c f^2}}+1\right )^2}} \left (d g-e \left (f-\frac {\sqrt {a g^2+c f^2}}{\sqrt {c}}\right )\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {f+g x}}{\sqrt [4]{c f^2+a g^2}}\right ),\frac {1}{2} \left (\frac {\sqrt {c} f}{\sqrt {c f^2+a g^2}}+1\right )\right )}{2 \sqrt [4]{c} \sqrt {a+\frac {c f^2}{g^2}-\frac {2 c f (f+g x)}{g^2}+\frac {c (f+g x)^2}{g^2}}}\right )}{g^2}\)

\(\Big \downarrow \) 1509

\(\displaystyle -\frac {2 \left (\frac {e \sqrt {a g^2+c f^2} \left (\frac {\sqrt [4]{a g^2+c f^2} \left (\frac {\sqrt {c} (f+g x)}{\sqrt {a g^2+c f^2}}+1\right ) \sqrt {\frac {a+\frac {c f^2}{g^2}-\frac {2 c f (f+g x)}{g^2}+\frac {c (f+g x)^2}{g^2}}{\left (a+\frac {c f^2}{g^2}\right ) \left (\frac {\sqrt {c} (f+g x)}{\sqrt {a g^2+c f^2}}+1\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {f+g x}}{\sqrt [4]{c f^2+a g^2}}\right )|\frac {1}{2} \left (\frac {\sqrt {c} f}{\sqrt {c f^2+a g^2}}+1\right )\right )}{\sqrt [4]{c} \sqrt {a+\frac {c f^2}{g^2}-\frac {2 c f (f+g x)}{g^2}+\frac {c (f+g x)^2}{g^2}}}-\frac {\sqrt {f+g x} \sqrt {a+\frac {c f^2}{g^2}-\frac {2 c f (f+g x)}{g^2}+\frac {c (f+g x)^2}{g^2}}}{\left (a+\frac {c f^2}{g^2}\right ) \left (\frac {\sqrt {c} (f+g x)}{\sqrt {a g^2+c f^2}}+1\right )}\right )}{\sqrt {c}}-\frac {\sqrt [4]{a g^2+c f^2} \left (\frac {\sqrt {c} (f+g x)}{\sqrt {a g^2+c f^2}}+1\right ) \sqrt {\frac {a+\frac {c f^2}{g^2}-\frac {2 c f (f+g x)}{g^2}+\frac {c (f+g x)^2}{g^2}}{\left (a+\frac {c f^2}{g^2}\right ) \left (\frac {\sqrt {c} (f+g x)}{\sqrt {a g^2+c f^2}}+1\right )^2}} \left (d g-e \left (f-\frac {\sqrt {a g^2+c f^2}}{\sqrt {c}}\right )\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {f+g x}}{\sqrt [4]{c f^2+a g^2}}\right ),\frac {1}{2} \left (\frac {\sqrt {c} f}{\sqrt {c f^2+a g^2}}+1\right )\right )}{2 \sqrt [4]{c} \sqrt {a+\frac {c f^2}{g^2}-\frac {2 c f (f+g x)}{g^2}+\frac {c (f+g x)^2}{g^2}}}\right )}{g^2}\)

Input:

Int[(d + e*x)/(Sqrt[f + g*x]*Sqrt[a + c*x^2]),x]
 

Output:

(-2*((e*Sqrt[c*f^2 + a*g^2]*(-((Sqrt[f + g*x]*Sqrt[a + (c*f^2)/g^2 - (2*c* 
f*(f + g*x))/g^2 + (c*(f + g*x)^2)/g^2])/((a + (c*f^2)/g^2)*(1 + (Sqrt[c]* 
(f + g*x))/Sqrt[c*f^2 + a*g^2]))) + ((c*f^2 + a*g^2)^(1/4)*(1 + (Sqrt[c]*( 
f + g*x))/Sqrt[c*f^2 + a*g^2])*Sqrt[(a + (c*f^2)/g^2 - (2*c*f*(f + g*x))/g 
^2 + (c*(f + g*x)^2)/g^2)/((a + (c*f^2)/g^2)*(1 + (Sqrt[c]*(f + g*x))/Sqrt 
[c*f^2 + a*g^2])^2)]*EllipticE[2*ArcTan[(c^(1/4)*Sqrt[f + g*x])/(c*f^2 + a 
*g^2)^(1/4)], (1 + (Sqrt[c]*f)/Sqrt[c*f^2 + a*g^2])/2])/(c^(1/4)*Sqrt[a + 
(c*f^2)/g^2 - (2*c*f*(f + g*x))/g^2 + (c*(f + g*x)^2)/g^2])))/Sqrt[c] - (( 
c*f^2 + a*g^2)^(1/4)*(d*g - e*(f - Sqrt[c*f^2 + a*g^2]/Sqrt[c]))*(1 + (Sqr 
t[c]*(f + g*x))/Sqrt[c*f^2 + a*g^2])*Sqrt[(a + (c*f^2)/g^2 - (2*c*f*(f + g 
*x))/g^2 + (c*(f + g*x)^2)/g^2)/((a + (c*f^2)/g^2)*(1 + (Sqrt[c]*(f + g*x) 
)/Sqrt[c*f^2 + a*g^2])^2)]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[f + g*x])/(c*f 
^2 + a*g^2)^(1/4)], (1 + (Sqrt[c]*f)/Sqrt[c*f^2 + a*g^2])/2])/(2*c^(1/4)*S 
qrt[a + (c*f^2)/g^2 - (2*c*f*(f + g*x))/g^2 + (c*(f + g*x)^2)/g^2])))/g^2
 

Defintions of rubi rules used

rule 599
Int[((A_.) + (B_.)*(x_))/(Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2] 
), x_Symbol] :> Simp[-2/d^2   Subst[Int[(B*c - A*d - B*x^2)/Sqrt[(b*c^2 + a 
*d^2)/d^2 - 2*b*c*(x^2/d^2) + b*(x^4/d^2)], x], x, Sqrt[c + d*x]], x] /; Fr 
eeQ[{a, b, c, d, A, B}, x] && PosQ[b/a]
 

rule 1416
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c 
/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/ 
(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c)) 
], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]
 

rule 1509
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q 
^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2* 
x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2 
/(4*c))], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 
- 4*a*c, 0] && PosQ[c/a]
 

rule 1511
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 2]}, Simp[(e + d*q)/q   Int[1/Sqrt[a + b*x^2 + c*x^ 
4], x], x] - Simp[e/q   Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x] /; 
NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && Pos 
Q[c/a]
 
Maple [A] (verified)

Time = 2.83 (sec) , antiderivative size = 520, normalized size of antiderivative = 1.23

method result size
default \(\frac {2 \left (\operatorname {EllipticF}\left (\sqrt {-\frac {\left (g x +f \right ) c}{\sqrt {-a c}\, g -c f}}, \sqrt {-\frac {\sqrt {-a c}\, g -c f}{\sqrt {-a c}\, g +c f}}\right ) a e \,g^{2}+\operatorname {EllipticF}\left (\sqrt {-\frac {\left (g x +f \right ) c}{\sqrt {-a c}\, g -c f}}, \sqrt {-\frac {\sqrt {-a c}\, g -c f}{\sqrt {-a c}\, g +c f}}\right ) c d f g -\sqrt {-a c}\, \operatorname {EllipticF}\left (\sqrt {-\frac {\left (g x +f \right ) c}{\sqrt {-a c}\, g -c f}}, \sqrt {-\frac {\sqrt {-a c}\, g -c f}{\sqrt {-a c}\, g +c f}}\right ) d \,g^{2}+\sqrt {-a c}\, \operatorname {EllipticF}\left (\sqrt {-\frac {\left (g x +f \right ) c}{\sqrt {-a c}\, g -c f}}, \sqrt {-\frac {\sqrt {-a c}\, g -c f}{\sqrt {-a c}\, g +c f}}\right ) e f g -\operatorname {EllipticE}\left (\sqrt {-\frac {\left (g x +f \right ) c}{\sqrt {-a c}\, g -c f}}, \sqrt {-\frac {\sqrt {-a c}\, g -c f}{\sqrt {-a c}\, g +c f}}\right ) a e \,g^{2}-\operatorname {EllipticE}\left (\sqrt {-\frac {\left (g x +f \right ) c}{\sqrt {-a c}\, g -c f}}, \sqrt {-\frac {\sqrt {-a c}\, g -c f}{\sqrt {-a c}\, g +c f}}\right ) c e \,f^{2}\right ) \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) g}{\sqrt {-a c}\, g -c f}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) g}{\sqrt {-a c}\, g +c f}}\, \sqrt {-\frac {\left (g x +f \right ) c}{\sqrt {-a c}\, g -c f}}\, \sqrt {g x +f}\, \sqrt {c \,x^{2}+a}}{c \,g^{2} \left (c g \,x^{3}+c f \,x^{2}+a g x +a f \right )}\) \(520\)
elliptic \(\frac {\sqrt {\left (g x +f \right ) \left (c \,x^{2}+a \right )}\, \left (\frac {2 d \left (\frac {f}{g}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\right )}{\sqrt {c g \,x^{3}+c f \,x^{2}+a g x +a f}}+\frac {2 e \left (\frac {f}{g}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}}\, \left (\left (-\frac {f}{g}-\frac {\sqrt {-a c}}{c}\right ) \operatorname {EllipticE}\left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\right )+\frac {\sqrt {-a c}\, \operatorname {EllipticF}\left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\right )}{c}\right )}{\sqrt {c g \,x^{3}+c f \,x^{2}+a g x +a f}}\right )}{\sqrt {g x +f}\, \sqrt {c \,x^{2}+a}}\) \(556\)

Input:

int((e*x+d)/(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

2*(EllipticF((-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2),(-((-a*c)^(1/2)*g-c*f 
)/((-a*c)^(1/2)*g+c*f))^(1/2))*a*e*g^2+EllipticF((-(g*x+f)*c/((-a*c)^(1/2) 
*g-c*f))^(1/2),(-((-a*c)^(1/2)*g-c*f)/((-a*c)^(1/2)*g+c*f))^(1/2))*c*d*f*g 
-(-a*c)^(1/2)*EllipticF((-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2),(-((-a*c)^ 
(1/2)*g-c*f)/((-a*c)^(1/2)*g+c*f))^(1/2))*d*g^2+(-a*c)^(1/2)*EllipticF((-( 
g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2),(-((-a*c)^(1/2)*g-c*f)/((-a*c)^(1/2)* 
g+c*f))^(1/2))*e*f*g-EllipticE((-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2),(-( 
(-a*c)^(1/2)*g-c*f)/((-a*c)^(1/2)*g+c*f))^(1/2))*a*e*g^2-EllipticE((-(g*x+ 
f)*c/((-a*c)^(1/2)*g-c*f))^(1/2),(-((-a*c)^(1/2)*g-c*f)/((-a*c)^(1/2)*g+c* 
f))^(1/2))*c*e*f^2)*((c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g-c*f))^(1/2)*((-c 
*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g+c*f))^(1/2)*(-(g*x+f)*c/((-a*c)^(1/2)*g 
-c*f))^(1/2)*(g*x+f)^(1/2)*(c*x^2+a)^(1/2)/c/g^2/(c*g*x^3+c*f*x^2+a*g*x+a* 
f)
 

Fricas [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 180, normalized size of antiderivative = 0.42 \[ \int \frac {d+e x}{\sqrt {f+g x} \sqrt {a+c x^2}} \, dx=-\frac {2 \, {\left (3 \, \sqrt {c g} e g {\rm weierstrassZeta}\left (\frac {4 \, {\left (c f^{2} - 3 \, a g^{2}\right )}}{3 \, c g^{2}}, -\frac {8 \, {\left (c f^{3} + 9 \, a f g^{2}\right )}}{27 \, c g^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c f^{2} - 3 \, a g^{2}\right )}}{3 \, c g^{2}}, -\frac {8 \, {\left (c f^{3} + 9 \, a f g^{2}\right )}}{27 \, c g^{3}}, \frac {3 \, g x + f}{3 \, g}\right )\right ) + {\left (e f - 3 \, d g\right )} \sqrt {c g} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c f^{2} - 3 \, a g^{2}\right )}}{3 \, c g^{2}}, -\frac {8 \, {\left (c f^{3} + 9 \, a f g^{2}\right )}}{27 \, c g^{3}}, \frac {3 \, g x + f}{3 \, g}\right )\right )}}{3 \, c g^{2}} \] Input:

integrate((e*x+d)/(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="fricas")
 

Output:

-2/3*(3*sqrt(c*g)*e*g*weierstrassZeta(4/3*(c*f^2 - 3*a*g^2)/(c*g^2), -8/27 
*(c*f^3 + 9*a*f*g^2)/(c*g^3), weierstrassPInverse(4/3*(c*f^2 - 3*a*g^2)/(c 
*g^2), -8/27*(c*f^3 + 9*a*f*g^2)/(c*g^3), 1/3*(3*g*x + f)/g)) + (e*f - 3*d 
*g)*sqrt(c*g)*weierstrassPInverse(4/3*(c*f^2 - 3*a*g^2)/(c*g^2), -8/27*(c* 
f^3 + 9*a*f*g^2)/(c*g^3), 1/3*(3*g*x + f)/g))/(c*g^2)
 

Sympy [F]

\[ \int \frac {d+e x}{\sqrt {f+g x} \sqrt {a+c x^2}} \, dx=\int \frac {d + e x}{\sqrt {a + c x^{2}} \sqrt {f + g x}}\, dx \] Input:

integrate((e*x+d)/(g*x+f)**(1/2)/(c*x**2+a)**(1/2),x)
 

Output:

Integral((d + e*x)/(sqrt(a + c*x**2)*sqrt(f + g*x)), x)
 

Maxima [F]

\[ \int \frac {d+e x}{\sqrt {f+g x} \sqrt {a+c x^2}} \, dx=\int { \frac {e x + d}{\sqrt {c x^{2} + a} \sqrt {g x + f}} \,d x } \] Input:

integrate((e*x+d)/(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="maxima")
 

Output:

integrate((e*x + d)/(sqrt(c*x^2 + a)*sqrt(g*x + f)), x)
 

Giac [F]

\[ \int \frac {d+e x}{\sqrt {f+g x} \sqrt {a+c x^2}} \, dx=\int { \frac {e x + d}{\sqrt {c x^{2} + a} \sqrt {g x + f}} \,d x } \] Input:

integrate((e*x+d)/(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="giac")
 

Output:

integrate((e*x + d)/(sqrt(c*x^2 + a)*sqrt(g*x + f)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {d+e x}{\sqrt {f+g x} \sqrt {a+c x^2}} \, dx=\int \frac {d+e\,x}{\sqrt {f+g\,x}\,\sqrt {c\,x^2+a}} \,d x \] Input:

int((d + e*x)/((f + g*x)^(1/2)*(a + c*x^2)^(1/2)),x)
 

Output:

int((d + e*x)/((f + g*x)^(1/2)*(a + c*x^2)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {d+e x}{\sqrt {f+g x} \sqrt {a+c x^2}} \, dx=\left (\int \frac {\sqrt {g x +f}\, \sqrt {c \,x^{2}+a}\, x}{c g \,x^{3}+c f \,x^{2}+a g x +a f}d x \right ) e +\left (\int \frac {\sqrt {g x +f}\, \sqrt {c \,x^{2}+a}}{c g \,x^{3}+c f \,x^{2}+a g x +a f}d x \right ) d \] Input:

int((e*x+d)/(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x)
                                                                                    
                                                                                    
 

Output:

int((sqrt(f + g*x)*sqrt(a + c*x**2)*x)/(a*f + a*g*x + c*f*x**2 + c*g*x**3) 
,x)*e + int((sqrt(f + g*x)*sqrt(a + c*x**2))/(a*f + a*g*x + c*f*x**2 + c*g 
*x**3),x)*d