\(\int \frac {1}{x^2 (d+e x) \sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\) [85]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 40, antiderivative size = 200 \[ \int \frac {1}{x^2 (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=-\frac {\left (c d^2-3 a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{a d^2 \left (c d^2-a e^2\right ) (d+e x)}-\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{a d e x (d+e x)}+\frac {\left (c d^2+3 a e^2\right ) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {e} (d+e x)}{\sqrt {d} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{a^{3/2} d^{5/2} e^{3/2}} \] Output:

-(-3*a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/a/d^2/(-a*e^2+c* 
d^2)/(e*x+d)-(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/a/d/e/x/(e*x+d)+(3*a* 
e^2+c*d^2)*arctanh(a^(1/2)*e^(1/2)*(e*x+d)/d^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+ 
c*d*e*x^2)^(1/2))/a^(3/2)/d^(5/2)/e^(3/2)
 

Mathematica [A] (verified)

Time = 0.39 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.00 \[ \int \frac {1}{x^2 (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {\sqrt {a} \sqrt {d} \sqrt {e} \left (-c^2 d^3 x (d+e x)+a^2 e^3 (d+3 e x)-a c d e \left (d^2-3 e^2 x^2\right )\right )+\left (c^2 d^4+2 a c d^2 e^2-3 a^2 e^4\right ) x \sqrt {a e+c d x} \sqrt {d+e x} \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a e+c d x}}{\sqrt {a} \sqrt {e} \sqrt {d+e x}}\right )}{a^{3/2} d^{5/2} e^{3/2} \left (c d^2-a e^2\right ) x \sqrt {(a e+c d x) (d+e x)}} \] Input:

Integrate[1/(x^2*(d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]
 

Output:

(Sqrt[a]*Sqrt[d]*Sqrt[e]*(-(c^2*d^3*x*(d + e*x)) + a^2*e^3*(d + 3*e*x) - a 
*c*d*e*(d^2 - 3*e^2*x^2)) + (c^2*d^4 + 2*a*c*d^2*e^2 - 3*a^2*e^4)*x*Sqrt[a 
*e + c*d*x]*Sqrt[d + e*x]*ArcTanh[(Sqrt[d]*Sqrt[a*e + c*d*x])/(Sqrt[a]*Sqr 
t[e]*Sqrt[d + e*x])])/(a^(3/2)*d^(5/2)*e^(3/2)*(c*d^2 - a*e^2)*x*Sqrt[(a*e 
 + c*d*x)*(d + e*x)])
 

Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 206, normalized size of antiderivative = 1.03, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {1214, 25, 27, 1228, 1154, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^2 (d+e x) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \, dx\)

\(\Big \downarrow \) 1214

\(\displaystyle \frac {2 e^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{d^2 (d+e x) \left (c d^2-a e^2\right )}-\int -\frac {d-e x}{d^2 x^2 \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx\)

\(\Big \downarrow \) 25

\(\displaystyle \int \frac {d-e x}{d^2 x^2 \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx+\frac {2 e^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{d^2 (d+e x) \left (c d^2-a e^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {d-e x}{x^2 \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{d^2}+\frac {2 e^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{d^2 (d+e x) \left (c d^2-a e^2\right )}\)

\(\Big \downarrow \) 1228

\(\displaystyle \frac {-\frac {1}{2} \left (\frac {c d^2}{a e}+3 e\right ) \int \frac {1}{x \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{a e x}}{d^2}+\frac {2 e^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{d^2 (d+e x) \left (c d^2-a e^2\right )}\)

\(\Big \downarrow \) 1154

\(\displaystyle \frac {\left (\frac {c d^2}{a e}+3 e\right ) \int \frac {1}{4 a d e-\frac {\left (2 a d e+\left (c d^2+a e^2\right ) x\right )^2}{c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}d\frac {2 a d e+\left (c d^2+a e^2\right ) x}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{a e x}}{d^2}+\frac {2 e^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{d^2 (d+e x) \left (c d^2-a e^2\right )}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {\left (\frac {c d^2}{a e}+3 e\right ) \text {arctanh}\left (\frac {x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt {a} \sqrt {d} \sqrt {e}}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{a e x}}{d^2}+\frac {2 e^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{d^2 (d+e x) \left (c d^2-a e^2\right )}\)

Input:

Int[1/(x^2*(d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]
 

Output:

(2*e^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(d^2*(c*d^2 - a*e^2)*( 
d + e*x)) + (-(Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(a*e*x)) + (((c 
*d^2)/(a*e) + 3*e)*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x)/(2*Sqrt[a]*Sqrt[d 
]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*Sqrt[a]*Sqrt[d 
]*Sqrt[e]))/d^2
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1154
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Sym 
bol] :> Simp[-2   Subst[Int[1/(4*c*d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, ( 
2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c 
, d, e}, x]
 

rule 1214
Int[(x_)^(n_.)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^ 
2)^(p_), x_Symbol] :> Simp[-2*(-d)^n*e^(2*m - n + 3)*(Sqrt[a + b*x + c*x^2] 
/((-2*c*d + b*e)^(m + 2)*(d + e*x))), x] - Simp[e^(2*m + 2)   Int[ExpandToS 
um[(((-d)^n*(-2*c*d + b*e)^(-m - 1))/(e^n*x^n) - ((-c)*d + b*e + c*e*x)^(-m 
 - 1))/(d + e*x), x]/(Sqrt[a + b*x + c*x^2]/x^n), x], x] /; FreeQ[{a, b, c, 
 d, e}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && ILtQ[m, 0] && ILtQ[n, 0] && 
EqQ[m + p, -3/2]
 

rule 1228
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(e*f - d*g))*(d + e*x)^(m + 1)*((a + 
 b*x + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2))), x] - Simp[(b*(e 
*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2))   Int[(d + e*x)^ 
(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x 
] && EqQ[Simplify[m + 2*p + 3], 0]
 
Maple [A] (verified)

Time = 2.94 (sec) , antiderivative size = 270, normalized size of antiderivative = 1.35

method result size
default \(\frac {-\frac {\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}{a d e x}+\frac {\left (a \,e^{2}+c \,d^{2}\right ) \ln \left (\frac {2 a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +2 \sqrt {a d e}\, \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}{x}\right )}{2 a d e \sqrt {a d e}}}{d}-\frac {2 e \sqrt {d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}}{d^{2} \left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}+\frac {e \ln \left (\frac {2 a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +2 \sqrt {a d e}\, \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}{x}\right )}{d^{2} \sqrt {a d e}}\) \(270\)

Input:

int(1/x^2/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2),x,method=_RETURN 
VERBOSE)
 

Output:

1/d*(-1/a/d/e/x*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)+1/2*(a*e^2+c*d^2)/ 
a/d/e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a* 
e^2+c*d^2)*x+c*d*x^2*e)^(1/2))/x))-2*e/d^2/(a*e^2-c*d^2)/(x+d/e)*(d*e*c*(x 
+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2)+e/d^2/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^ 
2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2))/x)
 

Fricas [A] (verification not implemented)

Time = 0.75 (sec) , antiderivative size = 610, normalized size of antiderivative = 3.05 \[ \int \frac {1}{x^2 (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\left [\frac {\sqrt {a d e} {\left ({\left (c^{2} d^{4} e + 2 \, a c d^{2} e^{3} - 3 \, a^{2} e^{5}\right )} x^{2} + {\left (c^{2} d^{5} + 2 \, a c d^{3} e^{2} - 3 \, a^{2} d e^{4}\right )} x\right )} \log \left (\frac {8 \, a^{2} d^{2} e^{2} + {\left (c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} x^{2} + 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {a d e} + 8 \, {\left (a c d^{3} e + a^{2} d e^{3}\right )} x}{x^{2}}\right ) - 4 \, {\left (a c d^{4} e - a^{2} d^{2} e^{3} + {\left (a c d^{3} e^{2} - 3 \, a^{2} d e^{4}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{4 \, {\left ({\left (a^{2} c d^{5} e^{3} - a^{3} d^{3} e^{5}\right )} x^{2} + {\left (a^{2} c d^{6} e^{2} - a^{3} d^{4} e^{4}\right )} x\right )}}, -\frac {\sqrt {-a d e} {\left ({\left (c^{2} d^{4} e + 2 \, a c d^{2} e^{3} - 3 \, a^{2} e^{5}\right )} x^{2} + {\left (c^{2} d^{5} + 2 \, a c d^{3} e^{2} - 3 \, a^{2} d e^{4}\right )} x\right )} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {-a d e}}{2 \, {\left (a c d^{2} e^{2} x^{2} + a^{2} d^{2} e^{2} + {\left (a c d^{3} e + a^{2} d e^{3}\right )} x\right )}}\right ) + 2 \, {\left (a c d^{4} e - a^{2} d^{2} e^{3} + {\left (a c d^{3} e^{2} - 3 \, a^{2} d e^{4}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{2 \, {\left ({\left (a^{2} c d^{5} e^{3} - a^{3} d^{3} e^{5}\right )} x^{2} + {\left (a^{2} c d^{6} e^{2} - a^{3} d^{4} e^{4}\right )} x\right )}}\right ] \] Input:

integrate(1/x^2/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorit 
hm="fricas")
                                                                                    
                                                                                    
 

Output:

[1/4*(sqrt(a*d*e)*((c^2*d^4*e + 2*a*c*d^2*e^3 - 3*a^2*e^5)*x^2 + (c^2*d^5 
+ 2*a*c*d^3*e^2 - 3*a^2*d*e^4)*x)*log((8*a^2*d^2*e^2 + (c^2*d^4 + 6*a*c*d^ 
2*e^2 + a^2*e^4)*x^2 + 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a* 
d*e + (c*d^2 + a*e^2)*x)*sqrt(a*d*e) + 8*(a*c*d^3*e + a^2*d*e^3)*x)/x^2) - 
 4*(a*c*d^4*e - a^2*d^2*e^3 + (a*c*d^3*e^2 - 3*a^2*d*e^4)*x)*sqrt(c*d*e*x^ 
2 + a*d*e + (c*d^2 + a*e^2)*x))/((a^2*c*d^5*e^3 - a^3*d^3*e^5)*x^2 + (a^2* 
c*d^6*e^2 - a^3*d^4*e^4)*x), -1/2*(sqrt(-a*d*e)*((c^2*d^4*e + 2*a*c*d^2*e^ 
3 - 3*a^2*e^5)*x^2 + (c^2*d^5 + 2*a*c*d^3*e^2 - 3*a^2*d*e^4)*x)*arctan(1/2 
*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x) 
*sqrt(-a*d*e)/(a*c*d^2*e^2*x^2 + a^2*d^2*e^2 + (a*c*d^3*e + a^2*d*e^3)*x)) 
 + 2*(a*c*d^4*e - a^2*d^2*e^3 + (a*c*d^3*e^2 - 3*a^2*d*e^4)*x)*sqrt(c*d*e* 
x^2 + a*d*e + (c*d^2 + a*e^2)*x))/((a^2*c*d^5*e^3 - a^3*d^3*e^5)*x^2 + (a^ 
2*c*d^6*e^2 - a^3*d^4*e^4)*x)]
 

Sympy [F]

\[ \int \frac {1}{x^2 (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int \frac {1}{x^{2} \sqrt {\left (d + e x\right ) \left (a e + c d x\right )} \left (d + e x\right )}\, dx \] Input:

integrate(1/x**2/(e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)
 

Output:

Integral(1/(x**2*sqrt((d + e*x)*(a*e + c*d*x))*(d + e*x)), x)
 

Maxima [F]

\[ \int \frac {1}{x^2 (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int { \frac {1}{\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (e x + d\right )} x^{2}} \,d x } \] Input:

integrate(1/x^2/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorit 
hm="maxima")
 

Output:

integrate(1/(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(e*x + d)*x^2), x 
)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {1}{x^2 (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(1/x^2/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorit 
hm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Unable to divide, perhaps due to ro 
unding error%%%{%%%{1,[0,0,1]%%%},[6,0]%%%}+%%%{%%{[%%%{-2,[0,1,0]%%%},0]: 
[1,0,%%%{
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^2 (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int \frac {1}{x^2\,\left (d+e\,x\right )\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}} \,d x \] Input:

int(1/(x^2*(d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)),x)
 

Output:

int(1/(x^2*(d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)), x)
 

Reduce [B] (verification not implemented)

Time = 0.48 (sec) , antiderivative size = 1302, normalized size of antiderivative = 6.51 \[ \int \frac {1}{x^2 (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx =\text {Too large to display} \] Input:

int(1/x^2/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x)
 

Output:

( - 2*sqrt(d + e*x)*sqrt(a*e + c*d*x)*a**2*d**2*e**3 - 6*sqrt(d + e*x)*sqr 
t(a*e + c*d*x)*a**2*d*e**4*x + 2*sqrt(d + e*x)*sqrt(a*e + c*d*x)*a*c*d**4* 
e + 2*sqrt(d + e*x)*sqrt(a*e + c*d*x)*a*c*d**3*e**2*x - 3*sqrt(e)*sqrt(d)* 
sqrt(a)*log(sqrt(e)*sqrt(a*e + c*d*x) - sqrt(2*sqrt(c)*sqrt(a)*d*e + a*e** 
2 + c*d**2) + sqrt(d)*sqrt(c)*sqrt(d + e*x))*a**2*d*e**4*x - 3*sqrt(e)*sqr 
t(d)*sqrt(a)*log(sqrt(e)*sqrt(a*e + c*d*x) - sqrt(2*sqrt(c)*sqrt(a)*d*e + 
a*e**2 + c*d**2) + sqrt(d)*sqrt(c)*sqrt(d + e*x))*a**2*e**5*x**2 + 2*sqrt( 
e)*sqrt(d)*sqrt(a)*log(sqrt(e)*sqrt(a*e + c*d*x) - sqrt(2*sqrt(c)*sqrt(a)* 
d*e + a*e**2 + c*d**2) + sqrt(d)*sqrt(c)*sqrt(d + e*x))*a*c*d**3*e**2*x + 
2*sqrt(e)*sqrt(d)*sqrt(a)*log(sqrt(e)*sqrt(a*e + c*d*x) - sqrt(2*sqrt(c)*s 
qrt(a)*d*e + a*e**2 + c*d**2) + sqrt(d)*sqrt(c)*sqrt(d + e*x))*a*c*d**2*e* 
*3*x**2 + sqrt(e)*sqrt(d)*sqrt(a)*log(sqrt(e)*sqrt(a*e + c*d*x) - sqrt(2*s 
qrt(c)*sqrt(a)*d*e + a*e**2 + c*d**2) + sqrt(d)*sqrt(c)*sqrt(d + e*x))*c** 
2*d**5*x + sqrt(e)*sqrt(d)*sqrt(a)*log(sqrt(e)*sqrt(a*e + c*d*x) - sqrt(2* 
sqrt(c)*sqrt(a)*d*e + a*e**2 + c*d**2) + sqrt(d)*sqrt(c)*sqrt(d + e*x))*c* 
*2*d**4*e*x**2 - 3*sqrt(e)*sqrt(d)*sqrt(a)*log(sqrt(e)*sqrt(a*e + c*d*x) + 
 sqrt(2*sqrt(c)*sqrt(a)*d*e + a*e**2 + c*d**2) + sqrt(d)*sqrt(c)*sqrt(d + 
e*x))*a**2*d*e**4*x - 3*sqrt(e)*sqrt(d)*sqrt(a)*log(sqrt(e)*sqrt(a*e + c*d 
*x) + sqrt(2*sqrt(c)*sqrt(a)*d*e + a*e**2 + c*d**2) + sqrt(d)*sqrt(c)*sqrt 
(d + e*x))*a**2*e**5*x**2 + 2*sqrt(e)*sqrt(d)*sqrt(a)*log(sqrt(e)*sqrt(...