\(\int \frac {x^2 (d+e x)}{(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx\) [89]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 38, antiderivative size = 182 \[ \int \frac {x^2 (d+e x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 a^2 e^2 (d+e x)}{c^2 d^2 \left (c d^2-a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{c^2 d^2 e}-\frac {\left (c d^2+3 a e^2\right ) \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} (d+e x)}{\sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{c^{5/2} d^{5/2} e^{3/2}} \] Output:

-2*a^2*e^2*(e*x+d)/c^2/d^2/(-a*e^2+c*d^2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2 
)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c^2/d^2/e-(3*a*e^2+c*d^2)* 
arctanh(c^(1/2)*d^(1/2)*(e*x+d)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^ 
(1/2))/c^(5/2)/d^(5/2)/e^(3/2)
 

Mathematica [A] (verified)

Time = 0.41 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.02 \[ \int \frac {x^2 (d+e x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\frac {\sqrt {c} \sqrt {d} \sqrt {e} (d+e x) \left (-3 a^2 e^3+c^2 d^3 x+a c d e (d-e x)\right )-\left (c^2 d^4+2 a c d^2 e^2-3 a^2 e^4\right ) \sqrt {a e+c d x} \sqrt {d+e x} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {e} \sqrt {a e+c d x}}\right )}{c^{5/2} d^{5/2} e^{3/2} \left (c d^2-a e^2\right ) \sqrt {(a e+c d x) (d+e x)}} \] Input:

Integrate[(x^2*(d + e*x))/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2),x]
 

Output:

(Sqrt[c]*Sqrt[d]*Sqrt[e]*(d + e*x)*(-3*a^2*e^3 + c^2*d^3*x + a*c*d*e*(d - 
e*x)) - (c^2*d^4 + 2*a*c*d^2*e^2 - 3*a^2*e^4)*Sqrt[a*e + c*d*x]*Sqrt[d + e 
*x]*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])/(Sqrt[e]*Sqrt[a*e + c*d*x])])/ 
(c^(5/2)*d^(5/2)*e^(3/2)*(c*d^2 - a*e^2)*Sqrt[(a*e + c*d*x)*(d + e*x)])
 

Rubi [A] (verified)

Time = 0.60 (sec) , antiderivative size = 203, normalized size of antiderivative = 1.12, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {1211, 25, 27, 1160, 1092, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 (d+e x)}{\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1211

\(\displaystyle \frac {\int -\frac {e^2 (a e-c d x)}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{c^2 d^2 e^2}-\frac {2 a^2 e^2 (d+e x)}{c^2 d^2 \left (c d^2-a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int \frac {e^2 (a e-c d x)}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{c^2 d^2 e^2}-\frac {2 a^2 e^2 (d+e x)}{c^2 d^2 \left (c d^2-a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {a e-c d x}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{c^2 d^2}-\frac {2 a^2 e^2 (d+e x)}{c^2 d^2 \left (c d^2-a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

\(\Big \downarrow \) 1160

\(\displaystyle -\frac {\frac {\left (3 a e^2+c d^2\right ) \int \frac {1}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{2 e}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e}}{c^2 d^2}-\frac {2 a^2 e^2 (d+e x)}{c^2 d^2 \left (c d^2-a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

\(\Big \downarrow \) 1092

\(\displaystyle -\frac {\frac {\left (3 a e^2+c d^2\right ) \int \frac {1}{4 c d e-\frac {\left (c d^2+2 c e x d+a e^2\right )^2}{c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}d\frac {c d^2+2 c e x d+a e^2}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}}{e}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e}}{c^2 d^2}-\frac {2 a^2 e^2 (d+e x)}{c^2 d^2 \left (c d^2-a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {2 a^2 e^2 (d+e x)}{c^2 d^2 \left (c d^2-a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac {\frac {\left (3 a e^2+c d^2\right ) \text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt {c} \sqrt {d} e^{3/2}}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e}}{c^2 d^2}\)

Input:

Int[(x^2*(d + e*x))/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2),x]
 

Output:

(-2*a^2*e^2*(d + e*x))/(c^2*d^2*(c*d^2 - a*e^2)*Sqrt[a*d*e + (c*d^2 + a*e^ 
2)*x + c*d*e*x^2]) - (-(Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/e) + ( 
(c*d^2 + 3*a*e^2)*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*S 
qrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*Sqrt[c]*Sqrt[d]*e 
^(3/2)))/(c^2*d^2)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1092
Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2   Subst[I 
nt[1/(4*c - x^2), x], x, (b + 2*c*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a 
, b, c}, x]
 

rule 1160
Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol 
] :> Simp[e*((a + b*x + c*x^2)^(p + 1)/(2*c*(p + 1))), x] + Simp[(2*c*d - b 
*e)/(2*c)   Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] 
 && NeQ[p, -1]
 

rule 1211
Int[(((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.))/((a_.) + (b_.)* 
(x_) + (c_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[-2*(2*c*d - b*e)^(m - 2)*(c*( 
e*f + d*g) - b*e*g)^n*((d + e*x)/(c^(m + n - 1)*e^(n - 1)*Sqrt[a + b*x + c* 
x^2])), x] + Simp[1/(c^(m + n - 1)*e^(n - 2))   Int[ExpandToSum[((2*c*d - b 
*e)^(m - 1)*(c*(e*f + d*g) - b*e*g)^n - c^(m + n - 1)*e^n*(d + e*x)^(m - 1) 
*(f + g*x)^n)/(c*d - b*e - c*e*x), x]/Sqrt[a + b*x + c*x^2], x], x] /; Free 
Q[{a, b, c, d, e, f, g}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && IGtQ[m, 0] 
&& IGtQ[n, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(737\) vs. \(2(164)=328\).

Time = 2.44 (sec) , antiderivative size = 738, normalized size of antiderivative = 4.05

method result size
default \(d \left (-\frac {x}{d e c \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}-\frac {\left (a \,e^{2}+c \,d^{2}\right ) \left (-\frac {1}{d e c \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}-\frac {\left (a \,e^{2}+c \,d^{2}\right ) \left (2 c d x e +a \,e^{2}+c \,d^{2}\right )}{d e c \left (4 a c \,d^{2} e^{2}-\left (a \,e^{2}+c \,d^{2}\right )^{2}\right ) \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}\right )}{2 d e c}+\frac {\ln \left (\frac {\frac {1}{2} a \,e^{2}+\frac {1}{2} c \,d^{2}+c d x e}{\sqrt {d e c}}+\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}\right )}{d e c \sqrt {d e c}}\right )+e \left (\frac {x^{2}}{d e c \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}-\frac {3 \left (a \,e^{2}+c \,d^{2}\right ) \left (-\frac {x}{d e c \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}-\frac {\left (a \,e^{2}+c \,d^{2}\right ) \left (-\frac {1}{d e c \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}-\frac {\left (a \,e^{2}+c \,d^{2}\right ) \left (2 c d x e +a \,e^{2}+c \,d^{2}\right )}{d e c \left (4 a c \,d^{2} e^{2}-\left (a \,e^{2}+c \,d^{2}\right )^{2}\right ) \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}\right )}{2 d e c}+\frac {\ln \left (\frac {\frac {1}{2} a \,e^{2}+\frac {1}{2} c \,d^{2}+c d x e}{\sqrt {d e c}}+\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}\right )}{d e c \sqrt {d e c}}\right )}{2 d e c}-\frac {2 a \left (-\frac {1}{d e c \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}-\frac {\left (a \,e^{2}+c \,d^{2}\right ) \left (2 c d x e +a \,e^{2}+c \,d^{2}\right )}{d e c \left (4 a c \,d^{2} e^{2}-\left (a \,e^{2}+c \,d^{2}\right )^{2}\right ) \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}\right )}{c}\right )\) \(738\)

Input:

int(x^2*(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(3/2),x,method=_RETURNVE 
RBOSE)
 

Output:

d*(-x/d/e/c/(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)-1/2*(a*e^2+c*d^2)/d/e/ 
c*(-1/d/e/c/(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)-(a*e^2+c*d^2)/d/e/c*(2 
*c*d*e*x+a*e^2+c*d^2)/(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/(a*d*e+(a*e^2+c*d^2) 
*x+c*d*x^2*e)^(1/2))+1/d/e/c*ln((1/2*a*e^2+1/2*c*d^2+c*d*x*e)/(d*e*c)^(1/2 
)+(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2))/(d*e*c)^(1/2))+e*(x^2/d/e/c/(a* 
d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)-3/2*(a*e^2+c*d^2)/d/e/c*(-x/d/e/c/(a* 
d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)-1/2*(a*e^2+c*d^2)/d/e/c*(-1/d/e/c/(a* 
d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)-(a*e^2+c*d^2)/d/e/c*(2*c*d*e*x+a*e^2+ 
c*d^2)/(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^( 
1/2))+1/d/e/c*ln((1/2*a*e^2+1/2*c*d^2+c*d*x*e)/(d*e*c)^(1/2)+(a*d*e+(a*e^2 
+c*d^2)*x+c*d*x^2*e)^(1/2))/(d*e*c)^(1/2))-2*a/c*(-1/d/e/c/(a*d*e+(a*e^2+c 
*d^2)*x+c*d*x^2*e)^(1/2)-(a*e^2+c*d^2)/d/e/c*(2*c*d*e*x+a*e^2+c*d^2)/(4*a* 
c*d^2*e^2-(a*e^2+c*d^2)^2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 608, normalized size of antiderivative = 3.34 \[ \int \frac {x^2 (d+e x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\left [\frac {{\left (a c^{2} d^{4} e + 2 \, a^{2} c d^{2} e^{3} - 3 \, a^{3} e^{5} + {\left (c^{3} d^{5} + 2 \, a c^{2} d^{3} e^{2} - 3 \, a^{2} c d e^{4}\right )} x\right )} \sqrt {c d e} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} - 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {c d e} + 8 \, {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right ) + 4 \, {\left (a c^{2} d^{3} e^{2} - 3 \, a^{2} c d e^{4} + {\left (c^{3} d^{4} e - a c^{2} d^{2} e^{3}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{4 \, {\left (a c^{4} d^{5} e^{3} - a^{2} c^{3} d^{3} e^{5} + {\left (c^{5} d^{6} e^{2} - a c^{4} d^{4} e^{4}\right )} x\right )}}, \frac {{\left (a c^{2} d^{4} e + 2 \, a^{2} c d^{2} e^{3} - 3 \, a^{3} e^{5} + {\left (c^{3} d^{5} + 2 \, a c^{2} d^{3} e^{2} - 3 \, a^{2} c d e^{4}\right )} x\right )} \sqrt {-c d e} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {-c d e}}{2 \, {\left (c^{2} d^{2} e^{2} x^{2} + a c d^{2} e^{2} + {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )}}\right ) + 2 \, {\left (a c^{2} d^{3} e^{2} - 3 \, a^{2} c d e^{4} + {\left (c^{3} d^{4} e - a c^{2} d^{2} e^{3}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{2 \, {\left (a c^{4} d^{5} e^{3} - a^{2} c^{3} d^{3} e^{5} + {\left (c^{5} d^{6} e^{2} - a c^{4} d^{4} e^{4}\right )} x\right )}}\right ] \] Input:

integrate(x^2*(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm 
="fricas")
 

Output:

[1/4*((a*c^2*d^4*e + 2*a^2*c*d^2*e^3 - 3*a^3*e^5 + (c^3*d^5 + 2*a*c^2*d^3* 
e^2 - 3*a^2*c*d*e^4)*x)*sqrt(c*d*e)*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a* 
c*d^2*e^2 + a^2*e^4 - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d 
*e*x + c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) + 4*(a*c^ 
2*d^3*e^2 - 3*a^2*c*d*e^4 + (c^3*d^4*e - a*c^2*d^2*e^3)*x)*sqrt(c*d*e*x^2 
+ a*d*e + (c*d^2 + a*e^2)*x))/(a*c^4*d^5*e^3 - a^2*c^3*d^3*e^5 + (c^5*d^6* 
e^2 - a*c^4*d^4*e^4)*x), 1/2*((a*c^2*d^4*e + 2*a^2*c*d^2*e^3 - 3*a^3*e^5 + 
 (c^3*d^5 + 2*a*c^2*d^3*e^2 - 3*a^2*c*d*e^4)*x)*sqrt(-c*d*e)*arctan(1/2*sq 
rt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt 
(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3)*x)) + 2* 
(a*c^2*d^3*e^2 - 3*a^2*c*d*e^4 + (c^3*d^4*e - a*c^2*d^2*e^3)*x)*sqrt(c*d*e 
*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(a*c^4*d^5*e^3 - a^2*c^3*d^3*e^5 + (c^5 
*d^6*e^2 - a*c^4*d^4*e^4)*x)]
 

Sympy [F]

\[ \int \frac {x^2 (d+e x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int \frac {x^{2} \left (d + e x\right )}{\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(x**2*(e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)
 

Output:

Integral(x**2*(d + e*x)/((d + e*x)*(a*e + c*d*x))**(3/2), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {x^2 (d+e x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(x^2*(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm 
="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(a*e^2-c*d^2>0)', see `assume?` f 
or more de
 

Giac [F(-2)]

Exception generated. \[ \int \frac {x^2 (d+e x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(x^2*(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm 
="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Unable to divide, perhaps due to ro 
unding error%%%{%%{[%%%{1,[3,3,0]%%%},0]:[1,0,%%%{-1,[1,1,1]%%%}]%%},[2,0] 
%%%}+%%%{
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2 (d+e x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int \frac {x^2\,\left (d+e\,x\right )}{{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}} \,d x \] Input:

int((x^2*(d + e*x))/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2),x)
 

Output:

int((x^2*(d + e*x))/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2), x)
                                                                                    
                                                                                    
 

Reduce [B] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 370, normalized size of antiderivative = 2.03 \[ \int \frac {x^2 (d+e x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\frac {-12 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {c d x +a e}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}}{\sqrt {a \,e^{2}-c \,d^{2}}}\right ) a^{2} e^{4}+8 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {c d x +a e}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}}{\sqrt {a \,e^{2}-c \,d^{2}}}\right ) a c \,d^{2} e^{2}+4 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {c d x +a e}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}}{\sqrt {a \,e^{2}-c \,d^{2}}}\right ) c^{2} d^{4}+9 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {c d x +a e}\, a^{2} e^{4}-2 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {c d x +a e}\, a c \,d^{2} e^{2}+\sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {c d x +a e}\, c^{2} d^{4}+12 \sqrt {e x +d}\, a^{2} c d \,e^{4}-4 \sqrt {e x +d}\, a \,c^{2} d^{3} e^{2}+4 \sqrt {e x +d}\, a \,c^{2} d^{2} e^{3} x -4 \sqrt {e x +d}\, c^{3} d^{4} e x}{4 \sqrt {c d x +a e}\, c^{3} d^{3} e^{2} \left (a \,e^{2}-c \,d^{2}\right )} \] Input:

int(x^2*(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x)
 

Output:

( - 12*sqrt(e)*sqrt(d)*sqrt(c)*sqrt(a*e + c*d*x)*log((sqrt(e)*sqrt(a*e + c 
*d*x) + sqrt(d)*sqrt(c)*sqrt(d + e*x))/sqrt(a*e**2 - c*d**2))*a**2*e**4 + 
8*sqrt(e)*sqrt(d)*sqrt(c)*sqrt(a*e + c*d*x)*log((sqrt(e)*sqrt(a*e + c*d*x) 
 + sqrt(d)*sqrt(c)*sqrt(d + e*x))/sqrt(a*e**2 - c*d**2))*a*c*d**2*e**2 + 4 
*sqrt(e)*sqrt(d)*sqrt(c)*sqrt(a*e + c*d*x)*log((sqrt(e)*sqrt(a*e + c*d*x) 
+ sqrt(d)*sqrt(c)*sqrt(d + e*x))/sqrt(a*e**2 - c*d**2))*c**2*d**4 + 9*sqrt 
(e)*sqrt(d)*sqrt(c)*sqrt(a*e + c*d*x)*a**2*e**4 - 2*sqrt(e)*sqrt(d)*sqrt(c 
)*sqrt(a*e + c*d*x)*a*c*d**2*e**2 + sqrt(e)*sqrt(d)*sqrt(c)*sqrt(a*e + c*d 
*x)*c**2*d**4 + 12*sqrt(d + e*x)*a**2*c*d*e**4 - 4*sqrt(d + e*x)*a*c**2*d* 
*3*e**2 + 4*sqrt(d + e*x)*a*c**2*d**2*e**3*x - 4*sqrt(d + e*x)*c**3*d**4*e 
*x)/(4*sqrt(a*e + c*d*x)*c**3*d**3*e**2*(a*e**2 - c*d**2))