\(\int \frac {(d+e x) \sqrt {a d e+(c d^2+a e^2) x+c d e x^2}}{x^4} \, dx\) [8]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 38, antiderivative size = 203 \[ \int \frac {(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^4} \, dx=\frac {\left (c d^2-a e^2\right ) \left (2 a d e+\left (c d^2+a e^2\right ) x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 a^2 d e^2 x^2}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 a e x^3}-\frac {\left (c d^2-a e^2\right )^3 \text {arctanh}\left (\frac {\sqrt {a} \sqrt {e} (d+e x)}{\sqrt {d} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 a^{5/2} d^{3/2} e^{5/2}} \] Output:

1/8*(-a*e^2+c*d^2)*(2*a*d*e+(a*e^2+c*d^2)*x)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e* 
x^2)^(1/2)/a^2/d/e^2/x^2-1/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/a/e/x 
^3-1/8*(-a*e^2+c*d^2)^3*arctanh(a^(1/2)*e^(1/2)*(e*x+d)/d^(1/2)/(a*d*e+(a* 
e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/a^(5/2)/d^(3/2)/e^(5/2)
 

Mathematica [A] (verified)

Time = 0.56 (sec) , antiderivative size = 199, normalized size of antiderivative = 0.98 \[ \int \frac {(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^4} \, dx=\frac {\left (-c d^2+a e^2\right )^3 \sqrt {(a e+c d x) (d+e x)} \left (\frac {\sqrt {a} \sqrt {d} \sqrt {e} \left (-3 c^2 d^4 x^2+2 a c d^2 e x (d+4 e x)+a^2 e^2 \left (8 d^2+14 d e x+3 e^2 x^2\right )\right )}{\left (c d^2-a e^2\right )^3 x^3}+\frac {3 \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a e+c d x}}{\sqrt {a} \sqrt {e} \sqrt {d+e x}}\right )}{\sqrt {a e+c d x} \sqrt {d+e x}}\right )}{24 a^{5/2} d^{3/2} e^{5/2}} \] Input:

Integrate[((d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/x^4,x]
 

Output:

((-(c*d^2) + a*e^2)^3*Sqrt[(a*e + c*d*x)*(d + e*x)]*((Sqrt[a]*Sqrt[d]*Sqrt 
[e]*(-3*c^2*d^4*x^2 + 2*a*c*d^2*e*x*(d + 4*e*x) + a^2*e^2*(8*d^2 + 14*d*e* 
x + 3*e^2*x^2)))/((c*d^2 - a*e^2)^3*x^3) + (3*ArcTanh[(Sqrt[d]*Sqrt[a*e + 
c*d*x])/(Sqrt[a]*Sqrt[e]*Sqrt[d + e*x])])/(Sqrt[a*e + c*d*x]*Sqrt[d + e*x] 
)))/(24*a^(5/2)*d^(3/2)*e^(5/2))
 

Rubi [A] (verified)

Time = 0.64 (sec) , antiderivative size = 228, normalized size of antiderivative = 1.12, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {1228, 1152, 1154, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(d+e x) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{x^4} \, dx\)

\(\Big \downarrow \) 1228

\(\displaystyle -\frac {1}{2} \left (\frac {c d^2}{a e}-e\right ) \int \frac {\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}{x^3}dx-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 a e x^3}\)

\(\Big \downarrow \) 1152

\(\displaystyle -\frac {1}{2} \left (\frac {c d^2}{a e}-e\right ) \left (-\frac {\left (c d^2-a e^2\right )^2 \int \frac {1}{x \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{8 a d e}-\frac {\left (x \left (a e^2+c d^2\right )+2 a d e\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 a d e x^2}\right )-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 a e x^3}\)

\(\Big \downarrow \) 1154

\(\displaystyle -\frac {1}{2} \left (\frac {c d^2}{a e}-e\right ) \left (\frac {\left (c d^2-a e^2\right )^2 \int \frac {1}{4 a d e-\frac {\left (2 a d e+\left (c d^2+a e^2\right ) x\right )^2}{c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}d\frac {2 a d e+\left (c d^2+a e^2\right ) x}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}}{4 a d e}-\frac {\left (x \left (a e^2+c d^2\right )+2 a d e\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 a d e x^2}\right )-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 a e x^3}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {1}{2} \left (\frac {c d^2}{a e}-e\right ) \left (\frac {\left (c d^2-a e^2\right )^2 \text {arctanh}\left (\frac {x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 a^{3/2} d^{3/2} e^{3/2}}-\frac {\left (x \left (a e^2+c d^2\right )+2 a d e\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 a d e x^2}\right )-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 a e x^3}\)

Input:

Int[((d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/x^4,x]
 

Output:

-1/3*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(a*e*x^3) - (((c*d^2)/( 
a*e) - e)*(-1/4*((2*a*d*e + (c*d^2 + a*e^2)*x)*Sqrt[a*d*e + (c*d^2 + a*e^2 
)*x + c*d*e*x^2])/(a*d*e*x^2) + ((c*d^2 - a*e^2)^2*ArcTanh[(2*a*d*e + (c*d 
^2 + a*e^2)*x)/(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + 
 c*d*e*x^2])])/(8*a^(3/2)*d^(3/2)*e^(3/2))))/2
 

Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1152
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[(-(d + e*x)^(m + 1))*(d*b - 2*a*e + (2*c*d - b*e)*x)*((a + b 
*x + c*x^2)^p/(2*(m + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Simp[p*((b^2 - 4*a 
*c)/(2*(m + 1)*(c*d^2 - b*d*e + a*e^2)))   Int[(d + e*x)^(m + 2)*(a + b*x + 
 c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[m + 2*p + 2, 0] 
 && GtQ[p, 0]
 

rule 1154
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Sym 
bol] :> Simp[-2   Subst[Int[1/(4*c*d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, ( 
2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c 
, d, e}, x]
 

rule 1228
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(e*f - d*g))*(d + e*x)^(m + 1)*((a + 
 b*x + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2))), x] - Simp[(b*(e 
*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2))   Int[(d + e*x)^ 
(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x 
] && EqQ[Simplify[m + 2*p + 3], 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1339\) vs. \(2(179)=358\).

Time = 2.52 (sec) , antiderivative size = 1340, normalized size of antiderivative = 6.60

method result size
default \(\text {Expression too large to display}\) \(1340\)

Input:

int((e*x+d)*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)/x^4,x,method=_RETURNVE 
RBOSE)
 

Output:

d*(-1/3/a/d/e/x^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(3/2)-1/2*(a*e^2+c*d^2 
)/a/d/e*(-1/2/a/d/e/x^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(3/2)-1/4*(a*e^2 
+c*d^2)/a/d/e*(-1/a/d/e/x*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(3/2)+1/2*(a*e 
^2+c*d^2)/a/d/e*((a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)+1/2*(a*e^2+c*d^2) 
*ln((1/2*a*e^2+1/2*c*d^2+c*d*x*e)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d 
*x^2*e)^(1/2))/(d*e*c)^(1/2)-a*d*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2) 
*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2))/x))+2*c/a*(1/4 
*(2*c*d*e*x+a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)/c/d/e+1/8 
*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/d/e/c*ln((1/2*a*e^2+1/2*c*d^2+c*d*x*e)/(d 
*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2))/(d*e*c)^(1/2)))+1/2*c 
/a*((a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)+1/2*(a*e^2+c*d^2)*ln((1/2*a*e^ 
2+1/2*c*d^2+c*d*x*e)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2) 
)/(d*e*c)^(1/2)-a*d*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^ 
(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2))/x))))+e*(-1/2/a/d/e/x^2*(a* 
d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(3/2)-1/4*(a*e^2+c*d^2)/a/d/e*(-1/a/d/e/x*( 
a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(3/2)+1/2*(a*e^2+c*d^2)/a/d/e*((a*d*e+(a* 
e^2+c*d^2)*x+c*d*x^2*e)^(1/2)+1/2*(a*e^2+c*d^2)*ln((1/2*a*e^2+1/2*c*d^2+c* 
d*x*e)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2))/(d*e*c)^(1/2 
)-a*d*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+( 
a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2))/x))+2*c/a*(1/4*(2*c*d*e*x+a*e^2+c*d^2)...
 

Fricas [A] (verification not implemented)

Time = 0.72 (sec) , antiderivative size = 560, normalized size of antiderivative = 2.76 \[ \int \frac {(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^4} \, dx=\left [-\frac {3 \, {\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \sqrt {a d e} x^{3} \log \left (\frac {8 \, a^{2} d^{2} e^{2} + {\left (c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} x^{2} + 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {a d e} + 8 \, {\left (a c d^{3} e + a^{2} d e^{3}\right )} x}{x^{2}}\right ) + 4 \, {\left (8 \, a^{3} d^{3} e^{3} - {\left (3 \, a c^{2} d^{5} e - 8 \, a^{2} c d^{3} e^{3} - 3 \, a^{3} d e^{5}\right )} x^{2} + 2 \, {\left (a^{2} c d^{4} e^{2} + 7 \, a^{3} d^{2} e^{4}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{96 \, a^{3} d^{2} e^{3} x^{3}}, \frac {3 \, {\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \sqrt {-a d e} x^{3} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {-a d e}}{2 \, {\left (a c d^{2} e^{2} x^{2} + a^{2} d^{2} e^{2} + {\left (a c d^{3} e + a^{2} d e^{3}\right )} x\right )}}\right ) - 2 \, {\left (8 \, a^{3} d^{3} e^{3} - {\left (3 \, a c^{2} d^{5} e - 8 \, a^{2} c d^{3} e^{3} - 3 \, a^{3} d e^{5}\right )} x^{2} + 2 \, {\left (a^{2} c d^{4} e^{2} + 7 \, a^{3} d^{2} e^{4}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{48 \, a^{3} d^{2} e^{3} x^{3}}\right ] \] Input:

integrate((e*x+d)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^4,x, algorithm 
="fricas")
 

Output:

[-1/96*(3*(c^3*d^6 - 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - a^3*e^6)*sqrt(a*d 
*e)*x^3*log((8*a^2*d^2*e^2 + (c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4)*x^2 + 4*s 
qrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*s 
qrt(a*d*e) + 8*(a*c*d^3*e + a^2*d*e^3)*x)/x^2) + 4*(8*a^3*d^3*e^3 - (3*a*c 
^2*d^5*e - 8*a^2*c*d^3*e^3 - 3*a^3*d*e^5)*x^2 + 2*(a^2*c*d^4*e^2 + 7*a^3*d 
^2*e^4)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(a^3*d^2*e^3*x^3), 
 1/48*(3*(c^3*d^6 - 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - a^3*e^6)*sqrt(-a*d 
*e)*x^3*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + 
(c*d^2 + a*e^2)*x)*sqrt(-a*d*e)/(a*c*d^2*e^2*x^2 + a^2*d^2*e^2 + (a*c*d^3* 
e + a^2*d*e^3)*x)) - 2*(8*a^3*d^3*e^3 - (3*a*c^2*d^5*e - 8*a^2*c*d^3*e^3 - 
 3*a^3*d*e^5)*x^2 + 2*(a^2*c*d^4*e^2 + 7*a^3*d^2*e^4)*x)*sqrt(c*d*e*x^2 + 
a*d*e + (c*d^2 + a*e^2)*x))/(a^3*d^2*e^3*x^3)]
 

Sympy [F]

\[ \int \frac {(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^4} \, dx=\int \frac {\sqrt {\left (d + e x\right ) \left (a e + c d x\right )} \left (d + e x\right )}{x^{4}}\, dx \] Input:

integrate((e*x+d)*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/x**4,x)
 

Output:

Integral(sqrt((d + e*x)*(a*e + c*d*x))*(d + e*x)/x**4, x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^4} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((e*x+d)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^4,x, algorithm 
="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1007 vs. \(2 (179) = 358\).

Time = 0.15 (sec) , antiderivative size = 1007, normalized size of antiderivative = 4.96 \[ \int \frac {(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^4} \, dx =\text {Too large to display} \] Input:

integrate((e*x+d)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^4,x, algorithm 
="giac")
 

Output:

1/8*(c^3*d^6 - 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - a^3*e^6)*arctan(-(sqrt( 
c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))/sqrt(-a*d*e))/(sqr 
t(-a*d*e)*a^2*d*e^2) - 1/24*(3*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + 
 a*e^2*x + a*d*e))*a^2*c^3*d^8*e^2 + 39*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + 
c*d^2*x + a*e^2*x + a*d*e))*a^3*c^2*d^6*e^4 + 9*(sqrt(c*d*e)*x - sqrt(c*d* 
e*x^2 + c*d^2*x + a*e^2*x + a*d*e))*a^4*c*d^4*e^6 - 3*(sqrt(c*d*e)*x - sqr 
t(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))*a^5*d^2*e^8 + 16*sqrt(c*d*e)*a^4 
*c*d^5*e^5 + 8*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e 
))^3*a*c^3*d^7*e + 72*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x 
+ a*d*e))^3*a^2*c^2*d^5*e^3 + 72*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x 
 + a*e^2*x + a*d*e))^3*a^3*c*d^3*e^5 + 8*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + 
 c*d^2*x + a*e^2*x + a*d*e))^3*a^4*d*e^7 + 48*sqrt(c*d*e)*(sqrt(c*d*e)*x - 
 sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^2*a^2*c^2*d^6*e^2 + 48*sqrt( 
c*d*e)*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^2*a^3 
*c*d^4*e^4 - 3*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e 
))^5*c^3*d^6 + 9*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d 
*e))^5*a*c^2*d^4*e^2 + 39*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^ 
2*x + a*d*e))^5*a^2*c*d^2*e^4 + 3*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2* 
x + a*e^2*x + a*d*e))^5*a^3*e^6 + 96*sqrt(c*d*e)*(sqrt(c*d*e)*x - sqrt(c*d 
*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^4*a^2*c*d^3*e^3 + 48*sqrt(c*d*e)*(...
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^4} \, dx=\int \frac {\left (d+e\,x\right )\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{x^4} \,d x \] Input:

int(((d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2))/x^4,x)
 

Output:

int(((d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2))/x^4, x)
 

Reduce [B] (verification not implemented)

Time = 0.73 (sec) , antiderivative size = 1116, normalized size of antiderivative = 5.50 \[ \int \frac {(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^4} \, dx =\text {Too large to display} \] Input:

int((e*x+d)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^4,x)
 

Output:

( - 16*sqrt(d + e*x)*sqrt(a*e + c*d*x)*a**4*d**3*e**5 - 28*sqrt(d + e*x)*s 
qrt(a*e + c*d*x)*a**4*d**2*e**6*x - 6*sqrt(d + e*x)*sqrt(a*e + c*d*x)*a**4 
*d*e**7*x**2 - 16*sqrt(d + e*x)*sqrt(a*e + c*d*x)*a**3*c*d**5*e**3 - 32*sq 
rt(d + e*x)*sqrt(a*e + c*d*x)*a**3*c*d**4*e**4*x - 22*sqrt(d + e*x)*sqrt(a 
*e + c*d*x)*a**3*c*d**3*e**5*x**2 - 4*sqrt(d + e*x)*sqrt(a*e + c*d*x)*a**2 
*c**2*d**6*e**2*x - 10*sqrt(d + e*x)*sqrt(a*e + c*d*x)*a**2*c**2*d**5*e**3 
*x**2 + 6*sqrt(d + e*x)*sqrt(a*e + c*d*x)*a*c**3*d**7*e*x**2 - 3*sqrt(e)*s 
qrt(d)*sqrt(a)*log(sqrt(e)*sqrt(a*e + c*d*x) - sqrt(2*sqrt(c)*sqrt(a)*d*e 
+ a*e**2 + c*d**2) + sqrt(d)*sqrt(c)*sqrt(d + e*x))*a**4*e**8*x**3 + 6*sqr 
t(e)*sqrt(d)*sqrt(a)*log(sqrt(e)*sqrt(a*e + c*d*x) - sqrt(2*sqrt(c)*sqrt(a 
)*d*e + a*e**2 + c*d**2) + sqrt(d)*sqrt(c)*sqrt(d + e*x))*a**3*c*d**2*e**6 
*x**3 - 6*sqrt(e)*sqrt(d)*sqrt(a)*log(sqrt(e)*sqrt(a*e + c*d*x) - sqrt(2*s 
qrt(c)*sqrt(a)*d*e + a*e**2 + c*d**2) + sqrt(d)*sqrt(c)*sqrt(d + e*x))*a*c 
**3*d**6*e**2*x**3 + 3*sqrt(e)*sqrt(d)*sqrt(a)*log(sqrt(e)*sqrt(a*e + c*d* 
x) - sqrt(2*sqrt(c)*sqrt(a)*d*e + a*e**2 + c*d**2) + sqrt(d)*sqrt(c)*sqrt( 
d + e*x))*c**4*d**8*x**3 - 3*sqrt(e)*sqrt(d)*sqrt(a)*log(sqrt(e)*sqrt(a*e 
+ c*d*x) + sqrt(2*sqrt(c)*sqrt(a)*d*e + a*e**2 + c*d**2) + sqrt(d)*sqrt(c) 
*sqrt(d + e*x))*a**4*e**8*x**3 + 6*sqrt(e)*sqrt(d)*sqrt(a)*log(sqrt(e)*sqr 
t(a*e + c*d*x) + sqrt(2*sqrt(c)*sqrt(a)*d*e + a*e**2 + c*d**2) + sqrt(d)*s 
qrt(c)*sqrt(d + e*x))*a**3*c*d**2*e**6*x**3 - 6*sqrt(e)*sqrt(d)*sqrt(a)...