\(\int \frac {x^2 \sqrt {a d e+(c d^2+a e^2) x+c d e x^2}}{d+e x} \, dx\) [12]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 40, antiderivative size = 236 \[ \int \frac {x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\frac {x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 e}+\frac {\left (\left (5 c d^2-3 a e^2\right ) \left (3 c d^2+a e^2\right )-2 c d e \left (5 c d^2-a e^2\right ) x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{24 c^2 d^2 e^3}-\frac {\left (c d^2-a e^2\right ) \left (5 c^2 d^4+2 a c d^2 e^2+a^2 e^4\right ) \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} (d+e x)}{\sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 c^{5/2} d^{5/2} e^{7/2}} \] Output:

1/3*x^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/e+1/24*((-3*a*e^2+5*c*d^2) 
*(a*e^2+3*c*d^2)-2*c*d*e*(-a*e^2+5*c*d^2)*x)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e* 
x^2)^(1/2)/c^2/d^2/e^3-1/8*(-a*e^2+c*d^2)*(a^2*e^4+2*a*c*d^2*e^2+5*c^2*d^4 
)*arctanh(c^(1/2)*d^(1/2)*(e*x+d)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2 
)^(1/2))/c^(5/2)/d^(5/2)/e^(7/2)
 

Mathematica [A] (verified)

Time = 10.90 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.04 \[ \int \frac {x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\frac {\sqrt {(a e+c d x) (d+e x)} \left (\sqrt {c} \sqrt {d} \sqrt {e} \left (-3 a^2 e^4+2 a c d e^2 (-2 d+e x)+c^2 d^2 \left (15 d^2-10 d e x+8 e^2 x^2\right )\right )-\frac {3 \sqrt {c d} \sqrt {c d^2-a e^2} \left (5 c^2 d^4+2 a c d^2 e^2+a^2 e^4\right ) \text {arcsinh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a e+c d x}}{\sqrt {c d} \sqrt {c d^2-a e^2}}\right )}{\sqrt {a e+c d x} \sqrt {\frac {c d (d+e x)}{c d^2-a e^2}}}\right )}{24 c^{5/2} d^{5/2} e^{7/2}} \] Input:

Integrate[(x^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(d + e*x),x]
 

Output:

(Sqrt[(a*e + c*d*x)*(d + e*x)]*(Sqrt[c]*Sqrt[d]*Sqrt[e]*(-3*a^2*e^4 + 2*a* 
c*d*e^2*(-2*d + e*x) + c^2*d^2*(15*d^2 - 10*d*e*x + 8*e^2*x^2)) - (3*Sqrt[ 
c*d]*Sqrt[c*d^2 - a*e^2]*(5*c^2*d^4 + 2*a*c*d^2*e^2 + a^2*e^4)*ArcSinh[(Sq 
rt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*e + c*d*x])/(Sqrt[c*d]*Sqrt[c*d^2 - a*e^2])]) 
/(Sqrt[a*e + c*d*x]*Sqrt[(c*d*(d + e*x))/(c*d^2 - a*e^2)])))/(24*c^(5/2)*d 
^(5/2)*e^(7/2))
 

Rubi [A] (verified)

Time = 0.77 (sec) , antiderivative size = 259, normalized size of antiderivative = 1.10, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {1215, 1236, 27, 1225, 1092, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{d+e x} \, dx\)

\(\Big \downarrow \) 1215

\(\displaystyle \int \frac {x^2 (a e+c d x)}{\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}dx\)

\(\Big \downarrow \) 1236

\(\displaystyle \frac {\int -\frac {c d x \left (4 a d e+\left (5 c d^2-a e^2\right ) x\right )}{2 \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{3 c d e}+\frac {x^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 e}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {x^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 e}-\frac {\int \frac {x \left (4 a d e+\left (5 c d^2-a e^2\right ) x\right )}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{6 e}\)

\(\Big \downarrow \) 1225

\(\displaystyle \frac {x^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 e}-\frac {\frac {3 \left (c d^2-a e^2\right ) \left (a^2 e^4+2 a c d^2 e^2+5 c^2 d^4\right ) \int \frac {1}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{8 c^2 d^2 e^2}-\frac {\left (\left (5 c d^2-3 a e^2\right ) \left (a e^2+3 c d^2\right )-2 c d e x \left (5 c d^2-a e^2\right )\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 c^2 d^2 e^2}}{6 e}\)

\(\Big \downarrow \) 1092

\(\displaystyle \frac {x^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 e}-\frac {\frac {3 \left (c d^2-a e^2\right ) \left (a^2 e^4+2 a c d^2 e^2+5 c^2 d^4\right ) \int \frac {1}{4 c d e-\frac {\left (c d^2+2 c e x d+a e^2\right )^2}{c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}d\frac {c d^2+2 c e x d+a e^2}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}}{4 c^2 d^2 e^2}-\frac {\left (\left (5 c d^2-3 a e^2\right ) \left (a e^2+3 c d^2\right )-2 c d e x \left (5 c d^2-a e^2\right )\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 c^2 d^2 e^2}}{6 e}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {x^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 e}-\frac {\frac {3 \left (c d^2-a e^2\right ) \left (a^2 e^4+2 a c d^2 e^2+5 c^2 d^4\right ) \text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 c^{5/2} d^{5/2} e^{5/2}}-\frac {\left (\left (5 c d^2-3 a e^2\right ) \left (a e^2+3 c d^2\right )-2 c d e x \left (5 c d^2-a e^2\right )\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 c^2 d^2 e^2}}{6 e}\)

Input:

Int[(x^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(d + e*x),x]
 

Output:

(x^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(3*e) - (-1/4*(((5*c*d^2 
 - 3*a*e^2)*(3*c*d^2 + a*e^2) - 2*c*d*e*(5*c*d^2 - a*e^2)*x)*Sqrt[a*d*e + 
(c*d^2 + a*e^2)*x + c*d*e*x^2])/(c^2*d^2*e^2) + (3*(c*d^2 - a*e^2)*(5*c^2* 
d^4 + 2*a*c*d^2*e^2 + a^2*e^4)*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt 
[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(8*c^(5 
/2)*d^(5/2)*e^(5/2)))/(6*e)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1092
Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2   Subst[I 
nt[1/(4*c - x^2), x], x, (b + 2*c*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a 
, b, c}, x]
 

rule 1215
Int[(((f_.) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/( 
(d_) + (e_.)*(x_)), x_Symbol] :> Int[(a/d + c*(x/e))*(f + g*x)^n*(a + b*x + 
 c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[c*d^2 - 
 b*d*e + a*e^2, 0] && GtQ[p, 0]
 

rule 1225
Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*( 
x_)^2)^(p_), x_Symbol] :> Simp[(-(b*e*g*(p + 2) - c*(e*f + d*g)*(2*p + 3) - 
 2*c*e*g*(p + 1)*x))*((a + b*x + c*x^2)^(p + 1)/(2*c^2*(p + 1)*(2*p + 3))), 
 x] + Simp[(b^2*e*g*(p + 2) - 2*a*c*e*g + c*(2*c*d*f - b*(e*f + d*g))*(2*p 
+ 3))/(2*c^2*(2*p + 3))   Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c 
, d, e, f, g, p}, x] &&  !LeQ[p, -1]
 

rule 1236
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[g*(d + e*x)^m*((a + b*x + c*x^2)^(p + 
1)/(c*(m + 2*p + 2))), x] + Simp[1/(c*(m + 2*p + 2))   Int[(d + e*x)^(m - 1 
)*(a + b*x + c*x^2)^p*Simp[m*(c*d*f - a*e*g) + d*(2*c*f - b*g)*(p + 1) + (m 
*(c*e*f + c*d*g - b*e*g) + e*(p + 1)*(2*c*f - b*g))*x, x], x], x] /; FreeQ[ 
{a, b, c, d, e, f, g, p}, x] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0] && (Intege 
rQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p]) &&  !(IGtQ[m, 0] && EqQ[f, 0])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(511\) vs. \(2(212)=424\).

Time = 2.50 (sec) , antiderivative size = 512, normalized size of antiderivative = 2.17

method result size
default \(\frac {\frac {{\left (a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e \right )}^{\frac {3}{2}}}{3 d e c}-\frac {\left (a \,e^{2}+c \,d^{2}\right ) \left (\frac {\left (2 c d x e +a \,e^{2}+c \,d^{2}\right ) \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}{4 c d e}+\frac {\left (4 a c \,d^{2} e^{2}-\left (a \,e^{2}+c \,d^{2}\right )^{2}\right ) \ln \left (\frac {\frac {1}{2} a \,e^{2}+\frac {1}{2} c \,d^{2}+c d x e}{\sqrt {d e c}}+\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}\right )}{8 d e c \sqrt {d e c}}\right )}{2 d e c}}{e}+\frac {d^{2} \left (\sqrt {d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}+\frac {\left (a \,e^{2}-c \,d^{2}\right ) \ln \left (\frac {\frac {a \,e^{2}}{2}-\frac {c \,d^{2}}{2}+d e c \left (x +\frac {d}{e}\right )}{\sqrt {d e c}}+\sqrt {d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}\right )}{2 \sqrt {d e c}}\right )}{e^{3}}-\frac {d \left (\frac {\left (2 c d x e +a \,e^{2}+c \,d^{2}\right ) \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}{4 c d e}+\frac {\left (4 a c \,d^{2} e^{2}-\left (a \,e^{2}+c \,d^{2}\right )^{2}\right ) \ln \left (\frac {\frac {1}{2} a \,e^{2}+\frac {1}{2} c \,d^{2}+c d x e}{\sqrt {d e c}}+\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}\right )}{8 d e c \sqrt {d e c}}\right )}{e^{2}}\) \(512\)

Input:

int(x^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)/(e*x+d),x,method=_RETURNVE 
RBOSE)
 

Output:

1/e*(1/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(3/2)/d/e/c-1/2*(a*e^2+c*d^2)/d 
/e/c*(1/4*(2*c*d*e*x+a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)/ 
c/d/e+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/d/e/c*ln((1/2*a*e^2+1/2*c*d^2+c* 
d*x*e)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2))/(d*e*c)^(1/2 
)))+d^2/e^3*((d*e*c*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2)+1/2*(a*e^2-c*d^ 
2)*ln((1/2*a*e^2-1/2*c*d^2+d*e*c*(x+d/e))/(d*e*c)^(1/2)+(d*e*c*(x+d/e)^2+( 
a*e^2-c*d^2)*(x+d/e))^(1/2))/(d*e*c)^(1/2))-d/e^2*(1/4*(2*c*d*e*x+a*e^2+c* 
d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)/c/d/e+1/8*(4*a*c*d^2*e^2-(a*e 
^2+c*d^2)^2)/d/e/c*ln((1/2*a*e^2+1/2*c*d^2+c*d*x*e)/(d*e*c)^(1/2)+(a*d*e+( 
a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2))/(d*e*c)^(1/2))
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 536, normalized size of antiderivative = 2.27 \[ \int \frac {x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\left [-\frac {3 \, {\left (5 \, c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} - a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \sqrt {c d e} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} + 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {c d e} + 8 \, {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right ) - 4 \, {\left (8 \, c^{3} d^{3} e^{3} x^{2} + 15 \, c^{3} d^{5} e - 4 \, a c^{2} d^{3} e^{3} - 3 \, a^{2} c d e^{5} - 2 \, {\left (5 \, c^{3} d^{4} e^{2} - a c^{2} d^{2} e^{4}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{96 \, c^{3} d^{3} e^{4}}, \frac {3 \, {\left (5 \, c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} - a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \sqrt {-c d e} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {-c d e}}{2 \, {\left (c^{2} d^{2} e^{2} x^{2} + a c d^{2} e^{2} + {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )}}\right ) + 2 \, {\left (8 \, c^{3} d^{3} e^{3} x^{2} + 15 \, c^{3} d^{5} e - 4 \, a c^{2} d^{3} e^{3} - 3 \, a^{2} c d e^{5} - 2 \, {\left (5 \, c^{3} d^{4} e^{2} - a c^{2} d^{2} e^{4}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{48 \, c^{3} d^{3} e^{4}}\right ] \] Input:

integrate(x^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d),x, algorithm 
="fricas")
 

Output:

[-1/96*(3*(5*c^3*d^6 - 3*a*c^2*d^4*e^2 - a^2*c*d^2*e^4 - a^3*e^6)*sqrt(c*d 
*e)*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 4*sqrt(c*d 
*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(c*d*e 
) + 8*(c^2*d^3*e + a*c*d*e^3)*x) - 4*(8*c^3*d^3*e^3*x^2 + 15*c^3*d^5*e - 4 
*a*c^2*d^3*e^3 - 3*a^2*c*d*e^5 - 2*(5*c^3*d^4*e^2 - a*c^2*d^2*e^4)*x)*sqrt 
(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c^3*d^3*e^4), 1/48*(3*(5*c^3*d^6 
 - 3*a*c^2*d^4*e^2 - a^2*c*d^2*e^4 - a^3*e^6)*sqrt(-c*d*e)*arctan(1/2*sqrt 
(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(- 
c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3)*x)) + 2*(8 
*c^3*d^3*e^3*x^2 + 15*c^3*d^5*e - 4*a*c^2*d^3*e^3 - 3*a^2*c*d*e^5 - 2*(5*c 
^3*d^4*e^2 - a*c^2*d^2*e^4)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x) 
)/(c^3*d^3*e^4)]
 

Sympy [F]

\[ \int \frac {x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\int \frac {x^{2} \sqrt {\left (d + e x\right ) \left (a e + c d x\right )}}{d + e x}\, dx \] Input:

integrate(x**2*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/(e*x+d),x)
 

Output:

Integral(x**2*sqrt((d + e*x)*(a*e + c*d*x))/(d + e*x), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(x^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d),x, algorithm 
="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [A] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 224, normalized size of antiderivative = 0.95 \[ \int \frac {x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\frac {1}{24} \, \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e} {\left (2 \, x {\left (\frac {4 \, x}{e} - \frac {5 \, c^{2} d^{3} e - a c d e^{3}}{c^{2} d^{2} e^{3}}\right )} + \frac {15 \, c^{2} d^{4} - 4 \, a c d^{2} e^{2} - 3 \, a^{2} e^{4}}{c^{2} d^{2} e^{3}}\right )} + \frac {{\left (5 \, c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} - a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \log \left ({\left | -c d^{2} - a e^{2} - 2 \, \sqrt {c d e} {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} \right |}\right )}{16 \, \sqrt {c d e} c^{2} d^{2} e^{3}} \] Input:

integrate(x^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d),x, algorithm 
="giac")
 

Output:

1/24*sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e)*(2*x*(4*x/e - (5*c^2*d^3* 
e - a*c*d*e^3)/(c^2*d^2*e^3)) + (15*c^2*d^4 - 4*a*c*d^2*e^2 - 3*a^2*e^4)/( 
c^2*d^2*e^3)) + 1/16*(5*c^3*d^6 - 3*a*c^2*d^4*e^2 - a^2*c*d^2*e^4 - a^3*e^ 
6)*log(abs(-c*d^2 - a*e^2 - 2*sqrt(c*d*e)*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 
+ c*d^2*x + a*e^2*x + a*d*e))))/(sqrt(c*d*e)*c^2*d^2*e^3)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\int \frac {x^2\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{d+e\,x} \,d x \] Input:

int((x^2*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2))/(d + e*x),x)
 

Output:

int((x^2*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2))/(d + e*x), x)
 

Reduce [B] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 400, normalized size of antiderivative = 1.69 \[ \int \frac {x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\frac {-3 \sqrt {e x +d}\, \sqrt {c d x +a e}\, a^{2} c d \,e^{5}-4 \sqrt {e x +d}\, \sqrt {c d x +a e}\, a \,c^{2} d^{3} e^{3}+2 \sqrt {e x +d}\, \sqrt {c d x +a e}\, a \,c^{2} d^{2} e^{4} x +15 \sqrt {e x +d}\, \sqrt {c d x +a e}\, c^{3} d^{5} e -10 \sqrt {e x +d}\, \sqrt {c d x +a e}\, c^{3} d^{4} e^{2} x +8 \sqrt {e x +d}\, \sqrt {c d x +a e}\, c^{3} d^{3} e^{3} x^{2}+3 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}}{\sqrt {a \,e^{2}-c \,d^{2}}}\right ) a^{3} e^{6}+3 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}}{\sqrt {a \,e^{2}-c \,d^{2}}}\right ) a^{2} c \,d^{2} e^{4}+9 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}}{\sqrt {a \,e^{2}-c \,d^{2}}}\right ) a \,c^{2} d^{4} e^{2}-15 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}}{\sqrt {a \,e^{2}-c \,d^{2}}}\right ) c^{3} d^{6}}{24 c^{3} d^{3} e^{4}} \] Input:

int(x^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d),x)
 

Output:

( - 3*sqrt(d + e*x)*sqrt(a*e + c*d*x)*a**2*c*d*e**5 - 4*sqrt(d + e*x)*sqrt 
(a*e + c*d*x)*a*c**2*d**3*e**3 + 2*sqrt(d + e*x)*sqrt(a*e + c*d*x)*a*c**2* 
d**2*e**4*x + 15*sqrt(d + e*x)*sqrt(a*e + c*d*x)*c**3*d**5*e - 10*sqrt(d + 
 e*x)*sqrt(a*e + c*d*x)*c**3*d**4*e**2*x + 8*sqrt(d + e*x)*sqrt(a*e + c*d* 
x)*c**3*d**3*e**3*x**2 + 3*sqrt(e)*sqrt(d)*sqrt(c)*log((sqrt(e)*sqrt(a*e + 
 c*d*x) + sqrt(d)*sqrt(c)*sqrt(d + e*x))/sqrt(a*e**2 - c*d**2))*a**3*e**6 
+ 3*sqrt(e)*sqrt(d)*sqrt(c)*log((sqrt(e)*sqrt(a*e + c*d*x) + sqrt(d)*sqrt( 
c)*sqrt(d + e*x))/sqrt(a*e**2 - c*d**2))*a**2*c*d**2*e**4 + 9*sqrt(e)*sqrt 
(d)*sqrt(c)*log((sqrt(e)*sqrt(a*e + c*d*x) + sqrt(d)*sqrt(c)*sqrt(d + e*x) 
)/sqrt(a*e**2 - c*d**2))*a*c**2*d**4*e**2 - 15*sqrt(e)*sqrt(d)*sqrt(c)*log 
((sqrt(e)*sqrt(a*e + c*d*x) + sqrt(d)*sqrt(c)*sqrt(d + e*x))/sqrt(a*e**2 - 
 c*d**2))*c**3*d**6)/(24*c**3*d**3*e**4)