\(\int \frac {\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}}{x^3 (d+e x)} \, dx\) [17]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 40, antiderivative size = 185 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^3 (d+e x)} \, dx=-\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 d x^2}-\frac {\left (\frac {c}{a e}-\frac {3 e}{d^2}\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 x}+\frac {\left (c d^2-a e^2\right ) \left (c d^2+3 a e^2\right ) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {e} (d+e x)}{\sqrt {d} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{4 a^{3/2} d^{5/2} e^{3/2}} \] Output:

-1/2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/d/x^2-1/4*(c/a/e-3*e/d^2)*(a* 
d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x+1/4*(-a*e^2+c*d^2)*(3*a*e^2+c*d^2)* 
arctanh(a^(1/2)*e^(1/2)*(e*x+d)/d^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^ 
(1/2))/a^(3/2)/d^(5/2)/e^(3/2)
 

Mathematica [A] (verified)

Time = 10.17 (sec) , antiderivative size = 162, normalized size of antiderivative = 0.88 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^3 (d+e x)} \, dx=\frac {\sqrt {(a e+c d x) (d+e x)} \left (\frac {\sqrt {a} \sqrt {d} \sqrt {e} \left (-c d^2 x+a e (-2 d+3 e x)\right )}{x^2}+\frac {\left (c^2 d^4+2 a c d^2 e^2-3 a^2 e^4\right ) \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a e+c d x}}{\sqrt {a} \sqrt {e} \sqrt {d+e x}}\right )}{\sqrt {a e+c d x} \sqrt {d+e x}}\right )}{4 a^{3/2} d^{5/2} e^{3/2}} \] Input:

Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(x^3*(d + e*x)),x]
 

Output:

(Sqrt[(a*e + c*d*x)*(d + e*x)]*((Sqrt[a]*Sqrt[d]*Sqrt[e]*(-(c*d^2*x) + a*e 
*(-2*d + 3*e*x)))/x^2 + ((c^2*d^4 + 2*a*c*d^2*e^2 - 3*a^2*e^4)*ArcTanh[(Sq 
rt[d]*Sqrt[a*e + c*d*x])/(Sqrt[a]*Sqrt[e]*Sqrt[d + e*x])])/(Sqrt[a*e + c*d 
*x]*Sqrt[d + e*x])))/(4*a^(3/2)*d^(5/2)*e^(3/2))
 

Rubi [A] (verified)

Time = 0.75 (sec) , antiderivative size = 211, normalized size of antiderivative = 1.14, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {1215, 1237, 27, 1228, 1154, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{x^3 (d+e x)} \, dx\)

\(\Big \downarrow \) 1215

\(\displaystyle \int \frac {a e+c d x}{x^3 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}dx\)

\(\Big \downarrow \) 1237

\(\displaystyle -\frac {\int -\frac {a e \left (c d^2-2 c e x d-3 a e^2\right )}{2 x^2 \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{2 a d e}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 d x^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {c d^2-2 c e x d-3 a e^2}{x^2 \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{4 d}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 d x^2}\)

\(\Big \downarrow \) 1228

\(\displaystyle \frac {-\frac {\left (\frac {c^2 d^4}{a}-3 a e^4+2 c d^2 e^2\right ) \int \frac {1}{x \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{2 d e}-\frac {\left (\frac {c d}{a e}-\frac {3 e}{d}\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{x}}{4 d}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 d x^2}\)

\(\Big \downarrow \) 1154

\(\displaystyle \frac {\frac {\left (\frac {c^2 d^4}{a}-3 a e^4+2 c d^2 e^2\right ) \int \frac {1}{4 a d e-\frac {\left (2 a d e+\left (c d^2+a e^2\right ) x\right )^2}{c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}d\frac {2 a d e+\left (c d^2+a e^2\right ) x}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}}{d e}-\frac {\left (\frac {c d}{a e}-\frac {3 e}{d}\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{x}}{4 d}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 d x^2}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {\left (\frac {c^2 d^4}{a}-3 a e^4+2 c d^2 e^2\right ) \text {arctanh}\left (\frac {x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt {a} d^{3/2} e^{3/2}}-\frac {\left (\frac {c d}{a e}-\frac {3 e}{d}\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{x}}{4 d}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 d x^2}\)

Input:

Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(x^3*(d + e*x)),x]
 

Output:

-1/2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(d*x^2) + (-((((c*d)/(a*e 
) - (3*e)/d)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/x) + (((c^2*d^4) 
/a + 2*c*d^2*e^2 - 3*a*e^4)*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x)/(2*Sqrt[ 
a]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*Sqrt[ 
a]*d^(3/2)*e^(3/2)))/(4*d)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1154
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Sym 
bol] :> Simp[-2   Subst[Int[1/(4*c*d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, ( 
2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c 
, d, e}, x]
 

rule 1215
Int[(((f_.) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/( 
(d_) + (e_.)*(x_)), x_Symbol] :> Int[(a/d + c*(x/e))*(f + g*x)^n*(a + b*x + 
 c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[c*d^2 - 
 b*d*e + a*e^2, 0] && GtQ[p, 0]
 

rule 1228
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(e*f - d*g))*(d + e*x)^(m + 1)*((a + 
 b*x + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2))), x] - Simp[(b*(e 
*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2))   Int[(d + e*x)^ 
(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x 
] && EqQ[Simplify[m + 2*p + 3], 0]
 

rule 1237
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(e*f - d*g)*(d + e*x)^(m + 1)*((a + b* 
x + c*x^2)^(p + 1)/((m + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Simp[1/((m + 1) 
*(c*d^2 - b*d*e + a*e^2))   Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*Simp[ 
(c*d*f - f*b*e + a*e*g)*(m + 1) + b*(d*g - e*f)*(p + 1) - c*(e*f - d*g)*(m 
+ 2*p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && LtQ[m, -1 
] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1352\) vs. \(2(161)=322\).

Time = 2.60 (sec) , antiderivative size = 1353, normalized size of antiderivative = 7.31

method result size
default \(\text {Expression too large to display}\) \(1353\)

Input:

int((a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)/x^3/(e*x+d),x,method=_RETURNVE 
RBOSE)
 

Output:

1/d*(-1/2/a/d/e/x^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(3/2)-1/4*(a*e^2+c*d 
^2)/a/d/e*(-1/a/d/e/x*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(3/2)+1/2*(a*e^2+c 
*d^2)/a/d/e*((a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)+1/2*(a*e^2+c*d^2)*ln( 
(1/2*a*e^2+1/2*c*d^2+c*d*x*e)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2 
*e)^(1/2))/(d*e*c)^(1/2)-a*d*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2 
*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2))/x))+2*c/a*(1/4*(2* 
c*d*e*x+a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)/c/d/e+1/8*(4* 
a*c*d^2*e^2-(a*e^2+c*d^2)^2)/d/e/c*ln((1/2*a*e^2+1/2*c*d^2+c*d*x*e)/(d*e*c 
)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2))/(d*e*c)^(1/2)))+1/2*c/a*( 
(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)+1/2*(a*e^2+c*d^2)*ln((1/2*a*e^2+1/ 
2*c*d^2+c*d*x*e)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2))/(d 
*e*c)^(1/2)-a*d*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2 
)*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2))/x)))+e^2/d^3*((a*d*e+(a*e^2+c*d 
^2)*x+c*d*x^2*e)^(1/2)+1/2*(a*e^2+c*d^2)*ln((1/2*a*e^2+1/2*c*d^2+c*d*x*e)/ 
(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2))/(d*e*c)^(1/2)-a*d*e 
/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c 
*d^2)*x+c*d*x^2*e)^(1/2))/x))-e/d^2*(-1/a/d/e/x*(a*d*e+(a*e^2+c*d^2)*x+c*d 
*x^2*e)^(3/2)+1/2*(a*e^2+c*d^2)/a/d/e*((a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^( 
1/2)+1/2*(a*e^2+c*d^2)*ln((1/2*a*e^2+1/2*c*d^2+c*d*x*e)/(d*e*c)^(1/2)+(a*d 
*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2))/(d*e*c)^(1/2)-a*d*e/(a*d*e)^(1/2)*...
 

Fricas [A] (verification not implemented)

Time = 0.37 (sec) , antiderivative size = 442, normalized size of antiderivative = 2.39 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^3 (d+e x)} \, dx=\left [-\frac {{\left (c^{2} d^{4} + 2 \, a c d^{2} e^{2} - 3 \, a^{2} e^{4}\right )} \sqrt {a d e} x^{2} \log \left (\frac {8 \, a^{2} d^{2} e^{2} + {\left (c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} x^{2} - 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {a d e} + 8 \, {\left (a c d^{3} e + a^{2} d e^{3}\right )} x}{x^{2}}\right ) + 4 \, {\left (2 \, a^{2} d^{2} e^{2} + {\left (a c d^{3} e - 3 \, a^{2} d e^{3}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{16 \, a^{2} d^{3} e^{2} x^{2}}, -\frac {{\left (c^{2} d^{4} + 2 \, a c d^{2} e^{2} - 3 \, a^{2} e^{4}\right )} \sqrt {-a d e} x^{2} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {-a d e}}{2 \, {\left (a c d^{2} e^{2} x^{2} + a^{2} d^{2} e^{2} + {\left (a c d^{3} e + a^{2} d e^{3}\right )} x\right )}}\right ) + 2 \, {\left (2 \, a^{2} d^{2} e^{2} + {\left (a c d^{3} e - 3 \, a^{2} d e^{3}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{8 \, a^{2} d^{3} e^{2} x^{2}}\right ] \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^3/(e*x+d),x, algorithm 
="fricas")
 

Output:

[-1/16*((c^2*d^4 + 2*a*c*d^2*e^2 - 3*a^2*e^4)*sqrt(a*d*e)*x^2*log((8*a^2*d 
^2*e^2 + (c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4)*x^2 - 4*sqrt(c*d*e*x^2 + a*d* 
e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(a*d*e) + 8*(a*c* 
d^3*e + a^2*d*e^3)*x)/x^2) + 4*(2*a^2*d^2*e^2 + (a*c*d^3*e - 3*a^2*d*e^3)* 
x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(a^2*d^3*e^2*x^2), -1/8*(( 
c^2*d^4 + 2*a*c*d^2*e^2 - 3*a^2*e^4)*sqrt(-a*d*e)*x^2*arctan(1/2*sqrt(c*d* 
e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-a*d 
*e)/(a*c*d^2*e^2*x^2 + a^2*d^2*e^2 + (a*c*d^3*e + a^2*d*e^3)*x)) + 2*(2*a^ 
2*d^2*e^2 + (a*c*d^3*e - 3*a^2*d*e^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + 
 a*e^2)*x))/(a^2*d^3*e^2*x^2)]
 

Sympy [F]

\[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^3 (d+e x)} \, dx=\int \frac {\sqrt {\left (d + e x\right ) \left (a e + c d x\right )}}{x^{3} \left (d + e x\right )}\, dx \] Input:

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/x**3/(e*x+d),x)
 

Output:

Integral(sqrt((d + e*x)*(a*e + c*d*x))/(x**3*(d + e*x)), x)
 

Maxima [F]

\[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^3 (d+e x)} \, dx=\int { \frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{{\left (e x + d\right )} x^{3}} \,d x } \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^3/(e*x+d),x, algorithm 
="maxima")
 

Output:

integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/((e*x + d)*x^3), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 505 vs. \(2 (161) = 322\).

Time = 0.14 (sec) , antiderivative size = 505, normalized size of antiderivative = 2.73 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^3 (d+e x)} \, dx=-\frac {{\left (c^{2} d^{4} + 2 \, a c d^{2} e^{2} - 3 \, a^{2} e^{4}\right )} \arctan \left (-\frac {\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}}{\sqrt {-a d e}}\right )}{4 \, \sqrt {-a d e} a d^{2} e} + \frac {{\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} a c^{2} d^{5} e + 10 \, {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} a^{2} c d^{3} e^{3} + 5 \, {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} a^{3} d e^{5} + 8 \, \sqrt {c d e} a^{3} d^{2} e^{4} + {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{3} c^{2} d^{4} + 2 \, {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{3} a c d^{2} e^{2} - 3 \, {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{3} a^{2} e^{4} + 8 \, \sqrt {c d e} {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{2} a c d^{3} e}{4 \, {\left (a d e - {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{2}\right )}^{2} a d^{2} e} \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^3/(e*x+d),x, algorithm 
="giac")
 

Output:

-1/4*(c^2*d^4 + 2*a*c*d^2*e^2 - 3*a^2*e^4)*arctan(-(sqrt(c*d*e)*x - sqrt(c 
*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))/sqrt(-a*d*e))/(sqrt(-a*d*e)*a*d^2*e 
) + 1/4*((sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))*a*c 
^2*d^5*e + 10*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e) 
)*a^2*c*d^3*e^3 + 5*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + 
a*d*e))*a^3*d*e^5 + 8*sqrt(c*d*e)*a^3*d^2*e^4 + (sqrt(c*d*e)*x - sqrt(c*d* 
e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^3*c^2*d^4 + 2*(sqrt(c*d*e)*x - sqrt(c* 
d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^3*a*c*d^2*e^2 - 3*(sqrt(c*d*e)*x - s 
qrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^3*a^2*e^4 + 8*sqrt(c*d*e)*(sqr 
t(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^2*a*c*d^3*e)/((a 
*d*e - (sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^2)^2* 
a*d^2*e)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^3 (d+e x)} \, dx=\int \frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{x^3\,\left (d+e\,x\right )} \,d x \] Input:

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/(x^3*(d + e*x)),x)
 

Output:

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/(x^3*(d + e*x)), x)
 

Reduce [B] (verification not implemented)

Time = 0.39 (sec) , antiderivative size = 966, normalized size of antiderivative = 5.22 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^3 (d+e x)} \, dx =\text {Too large to display} \] Input:

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^3/(e*x+d),x)
 

Output:

( - 4*sqrt(d + e*x)*sqrt(a*e + c*d*x)*a**3*d**2*e**4 + 6*sqrt(d + e*x)*sqr 
t(a*e + c*d*x)*a**3*d*e**5*x - 4*sqrt(d + e*x)*sqrt(a*e + c*d*x)*a**2*c*d* 
*4*e**2 + 4*sqrt(d + e*x)*sqrt(a*e + c*d*x)*a**2*c*d**3*e**3*x - 2*sqrt(d 
+ e*x)*sqrt(a*e + c*d*x)*a*c**2*d**5*e*x + 3*sqrt(e)*sqrt(d)*sqrt(a)*log(s 
qrt(e)*sqrt(a*e + c*d*x) - sqrt(2*sqrt(c)*sqrt(a)*d*e + a*e**2 + c*d**2) + 
 sqrt(d)*sqrt(c)*sqrt(d + e*x))*a**3*e**6*x**2 + sqrt(e)*sqrt(d)*sqrt(a)*l 
og(sqrt(e)*sqrt(a*e + c*d*x) - sqrt(2*sqrt(c)*sqrt(a)*d*e + a*e**2 + c*d** 
2) + sqrt(d)*sqrt(c)*sqrt(d + e*x))*a**2*c*d**2*e**4*x**2 - 3*sqrt(e)*sqrt 
(d)*sqrt(a)*log(sqrt(e)*sqrt(a*e + c*d*x) - sqrt(2*sqrt(c)*sqrt(a)*d*e + a 
*e**2 + c*d**2) + sqrt(d)*sqrt(c)*sqrt(d + e*x))*a*c**2*d**4*e**2*x**2 - s 
qrt(e)*sqrt(d)*sqrt(a)*log(sqrt(e)*sqrt(a*e + c*d*x) - sqrt(2*sqrt(c)*sqrt 
(a)*d*e + a*e**2 + c*d**2) + sqrt(d)*sqrt(c)*sqrt(d + e*x))*c**3*d**6*x**2 
 + 3*sqrt(e)*sqrt(d)*sqrt(a)*log(sqrt(e)*sqrt(a*e + c*d*x) + sqrt(2*sqrt(c 
)*sqrt(a)*d*e + a*e**2 + c*d**2) + sqrt(d)*sqrt(c)*sqrt(d + e*x))*a**3*e** 
6*x**2 + sqrt(e)*sqrt(d)*sqrt(a)*log(sqrt(e)*sqrt(a*e + c*d*x) + sqrt(2*sq 
rt(c)*sqrt(a)*d*e + a*e**2 + c*d**2) + sqrt(d)*sqrt(c)*sqrt(d + e*x))*a**2 
*c*d**2*e**4*x**2 - 3*sqrt(e)*sqrt(d)*sqrt(a)*log(sqrt(e)*sqrt(a*e + c*d*x 
) + sqrt(2*sqrt(c)*sqrt(a)*d*e + a*e**2 + c*d**2) + sqrt(d)*sqrt(c)*sqrt(d 
 + e*x))*a*c**2*d**4*e**2*x**2 - sqrt(e)*sqrt(d)*sqrt(a)*log(sqrt(e)*sqrt( 
a*e + c*d*x) + sqrt(2*sqrt(c)*sqrt(a)*d*e + a*e**2 + c*d**2) + sqrt(d)*...