\(\int \frac {\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}}{x (d+e x)^2} \, dx\) [24]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 40, antiderivative size = 112 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x (d+e x)^2} \, dx=\frac {2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d (d+e x)}-\frac {2 \sqrt {a} \sqrt {e} \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {a} \sqrt {e} (d+e x)}\right )}{d^{3/2}} \] Output:

2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/d/(e*x+d)-2*a^(1/2)*e^(1/2)*arct 
anh(d^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/a^(1/2)/e^(1/2)/(e*x+d 
))/d^(3/2)
 

Mathematica [A] (verified)

Time = 0.24 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.98 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x (d+e x)^2} \, dx=\frac {2 \sqrt {(a e+c d x) (d+e x)} \left (\frac {\sqrt {d}}{d+e x}-\frac {\sqrt {a} \sqrt {e} \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a e+c d x}}{\sqrt {a} \sqrt {e} \sqrt {d+e x}}\right )}{\sqrt {a e+c d x} \sqrt {d+e x}}\right )}{d^{3/2}} \] Input:

Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(x*(d + e*x)^2),x]
 

Output:

(2*Sqrt[(a*e + c*d*x)*(d + e*x)]*(Sqrt[d]/(d + e*x) - (Sqrt[a]*Sqrt[e]*Arc 
Tanh[(Sqrt[d]*Sqrt[a*e + c*d*x])/(Sqrt[a]*Sqrt[e]*Sqrt[d + e*x])])/(Sqrt[a 
*e + c*d*x]*Sqrt[d + e*x])))/d^(3/2)
 

Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.13, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {1214, 25, 27, 1154, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{x (d+e x)^2} \, dx\)

\(\Big \downarrow \) 1214

\(\displaystyle \frac {2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{d (d+e x)}-\frac {\int -\frac {a e^3}{d x \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{e^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {a e^3}{d x \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{e^2}+\frac {2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{d (d+e x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {a e \int \frac {1}{x \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{d}+\frac {2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{d (d+e x)}\)

\(\Big \downarrow \) 1154

\(\displaystyle \frac {2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{d (d+e x)}-\frac {2 a e \int \frac {1}{4 a d e-\frac {\left (2 a d e+\left (c d^2+a e^2\right ) x\right )^2}{c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}d\frac {2 a d e+\left (c d^2+a e^2\right ) x}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}}{d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{d (d+e x)}-\frac {\sqrt {a} \sqrt {e} \text {arctanh}\left (\frac {x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{d^{3/2}}\)

Input:

Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(x*(d + e*x)^2),x]
 

Output:

(2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(d*(d + e*x)) - (Sqrt[a]*S 
qrt[e]*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x)/(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sq 
rt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/d^(3/2)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1154
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Sym 
bol] :> Simp[-2   Subst[Int[1/(4*c*d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, ( 
2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c 
, d, e}, x]
 

rule 1214
Int[(x_)^(n_.)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^ 
2)^(p_), x_Symbol] :> Simp[-2*(-d)^n*e^(2*m - n + 3)*(Sqrt[a + b*x + c*x^2] 
/((-2*c*d + b*e)^(m + 2)*(d + e*x))), x] - Simp[e^(2*m + 2)   Int[ExpandToS 
um[(((-d)^n*(-2*c*d + b*e)^(-m - 1))/(e^n*x^n) - ((-c)*d + b*e + c*e*x)^(-m 
 - 1))/(d + e*x), x]/(Sqrt[a + b*x + c*x^2]/x^n), x], x] /; FreeQ[{a, b, c, 
 d, e}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && ILtQ[m, 0] && ILtQ[n, 0] && 
EqQ[m + p, -3/2]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(522\) vs. \(2(96)=192\).

Time = 2.65 (sec) , antiderivative size = 523, normalized size of antiderivative = 4.67

method result size
default \(\frac {\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}+\frac {\left (a \,e^{2}+c \,d^{2}\right ) \ln \left (\frac {\frac {1}{2} a \,e^{2}+\frac {1}{2} c \,d^{2}+c d x e}{\sqrt {d e c}}+\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}\right )}{2 \sqrt {d e c}}-\frac {a d e \ln \left (\frac {2 a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +2 \sqrt {a d e}\, \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}{x}\right )}{\sqrt {a d e}}}{d^{2}}-\frac {\sqrt {d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}+\frac {\left (a \,e^{2}-c \,d^{2}\right ) \ln \left (\frac {\frac {a \,e^{2}}{2}-\frac {c \,d^{2}}{2}+d e c \left (x +\frac {d}{e}\right )}{\sqrt {d e c}}+\sqrt {d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}\right )}{2 \sqrt {d e c}}}{d^{2}}-\frac {-\frac {2 \left (d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}{\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )^{2}}+\frac {2 d e c \left (\sqrt {d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}+\frac {\left (a \,e^{2}-c \,d^{2}\right ) \ln \left (\frac {\frac {a \,e^{2}}{2}-\frac {c \,d^{2}}{2}+d e c \left (x +\frac {d}{e}\right )}{\sqrt {d e c}}+\sqrt {d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}\right )}{2 \sqrt {d e c}}\right )}{a \,e^{2}-c \,d^{2}}}{e d}\) \(523\)

Input:

int((a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)/x/(e*x+d)^2,x,method=_RETURNVE 
RBOSE)
 

Output:

1/d^2*((a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)+1/2*(a*e^2+c*d^2)*ln((1/2*a 
*e^2+1/2*c*d^2+c*d*x*e)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1 
/2))/(d*e*c)^(1/2)-a*d*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d* 
e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2))/x))-1/d^2*((d*e*c*(x+d/e 
)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2)+1/2*(a*e^2-c*d^2)*ln((1/2*a*e^2-1/2*c*d^2 
+d*e*c*(x+d/e))/(d*e*c)^(1/2)+(d*e*c*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2 
))/(d*e*c)^(1/2))-1/e/d*(-2/(a*e^2-c*d^2)/(x+d/e)^2*(d*e*c*(x+d/e)^2+(a*e^ 
2-c*d^2)*(x+d/e))^(3/2)+2*d*e*c/(a*e^2-c*d^2)*((d*e*c*(x+d/e)^2+(a*e^2-c*d 
^2)*(x+d/e))^(1/2)+1/2*(a*e^2-c*d^2)*ln((1/2*a*e^2-1/2*c*d^2+d*e*c*(x+d/e) 
)/(d*e*c)^(1/2)+(d*e*c*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2))/(d*e*c)^(1/ 
2)))
 

Fricas [A] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 333, normalized size of antiderivative = 2.97 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x (d+e x)^2} \, dx=\left [\frac {{\left (e x + d\right )} \sqrt {\frac {a e}{d}} \log \left (\frac {8 \, a^{2} d^{2} e^{2} + {\left (c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} x^{2} - 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, a d^{2} e + {\left (c d^{3} + a d e^{2}\right )} x\right )} \sqrt {\frac {a e}{d}} + 8 \, {\left (a c d^{3} e + a^{2} d e^{3}\right )} x}{x^{2}}\right ) + 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{2 \, {\left (d e x + d^{2}\right )}}, \frac {{\left (e x + d\right )} \sqrt {-\frac {a e}{d}} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {-\frac {a e}{d}}}{2 \, {\left (a c d e^{2} x^{2} + a^{2} d e^{2} + {\left (a c d^{2} e + a^{2} e^{3}\right )} x\right )}}\right ) + 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{d e x + d^{2}}\right ] \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x/(e*x+d)^2,x, algorithm 
="fricas")
 

Output:

[1/2*((e*x + d)*sqrt(a*e/d)*log((8*a^2*d^2*e^2 + (c^2*d^4 + 6*a*c*d^2*e^2 
+ a^2*e^4)*x^2 - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d^2*e 
+ (c*d^3 + a*d*e^2)*x)*sqrt(a*e/d) + 8*(a*c*d^3*e + a^2*d*e^3)*x)/x^2) + 4 
*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(d*e*x + d^2), ((e*x + d)*sq 
rt(-a*e/d)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e 
 + (c*d^2 + a*e^2)*x)*sqrt(-a*e/d)/(a*c*d*e^2*x^2 + a^2*d*e^2 + (a*c*d^2*e 
 + a^2*e^3)*x)) + 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(d*e*x + 
d^2)]
                                                                                    
                                                                                    
 

Sympy [F]

\[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x (d+e x)^2} \, dx=\int \frac {\sqrt {\left (d + e x\right ) \left (a e + c d x\right )}}{x \left (d + e x\right )^{2}}\, dx \] Input:

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/x/(e*x+d)**2,x)
 

Output:

Integral(sqrt((d + e*x)*(a*e + c*d*x))/(x*(d + e*x)**2), x)
 

Maxima [F]

\[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x (d+e x)^2} \, dx=\int { \frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{{\left (e x + d\right )}^{2} x} \,d x } \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x/(e*x+d)^2,x, algorithm 
="maxima")
 

Output:

integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/((e*x + d)^2*x), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 200 vs. \(2 (96) = 192\).

Time = 0.16 (sec) , antiderivative size = 200, normalized size of antiderivative = 1.79 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x (d+e x)^2} \, dx=2 \, {\left (\frac {a \arctan \left (\frac {\sqrt {c d e - \frac {c d^{2} e}{e x + d} + \frac {a e^{3}}{e x + d}} d}{\sqrt {-a d e} e}\right ) \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right )}{\sqrt {-a d e} d {\left | e \right |}} - \frac {{\left (a e^{2} \arctan \left (\frac {\sqrt {c d e} d}{\sqrt {-a d e} e}\right ) + \sqrt {-a d e} \sqrt {c d e}\right )} \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right )}{\sqrt {-a d e} d e^{2} {\left | e \right |}} + \frac {\sqrt {c d e - \frac {c d^{2} e}{e x + d} + \frac {a e^{3}}{e x + d}} \mathrm {sgn}\left (\frac {1}{e x + d}\right ) \mathrm {sgn}\left (e\right )}{d e^{2} {\left | e \right |}}\right )} e {\left | e \right |} \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x/(e*x+d)^2,x, algorithm 
="giac")
 

Output:

2*(a*arctan(sqrt(c*d*e - c*d^2*e/(e*x + d) + a*e^3/(e*x + d))*d/(sqrt(-a*d 
*e)*e))*sgn(1/(e*x + d))*sgn(e)/(sqrt(-a*d*e)*d*abs(e)) - (a*e^2*arctan(sq 
rt(c*d*e)*d/(sqrt(-a*d*e)*e)) + sqrt(-a*d*e)*sqrt(c*d*e))*sgn(1/(e*x + d)) 
*sgn(e)/(sqrt(-a*d*e)*d*e^2*abs(e)) + sqrt(c*d*e - c*d^2*e/(e*x + d) + a*e 
^3/(e*x + d))*sgn(1/(e*x + d))*sgn(e)/(d*e^2*abs(e)))*e*abs(e)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x (d+e x)^2} \, dx=\int \frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{x\,{\left (d+e\,x\right )}^2} \,d x \] Input:

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/(x*(d + e*x)^2),x)
 

Output:

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/(x*(d + e*x)^2), x)
 

Reduce [B] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 380, normalized size of antiderivative = 3.39 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x (d+e x)^2} \, dx=\frac {2 \sqrt {e x +d}\, \sqrt {c d x +a e}\, d e +\sqrt {e}\, \sqrt {d}\, \sqrt {a}\, \mathrm {log}\left (\sqrt {e}\, \sqrt {c d x +a e}-\sqrt {2 \sqrt {c}\, \sqrt {a}\, d e +a \,e^{2}+c \,d^{2}}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}\right ) d e +\sqrt {e}\, \sqrt {d}\, \sqrt {a}\, \mathrm {log}\left (\sqrt {e}\, \sqrt {c d x +a e}-\sqrt {2 \sqrt {c}\, \sqrt {a}\, d e +a \,e^{2}+c \,d^{2}}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}\right ) e^{2} x +\sqrt {e}\, \sqrt {d}\, \sqrt {a}\, \mathrm {log}\left (\sqrt {e}\, \sqrt {c d x +a e}+\sqrt {2 \sqrt {c}\, \sqrt {a}\, d e +a \,e^{2}+c \,d^{2}}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}\right ) d e +\sqrt {e}\, \sqrt {d}\, \sqrt {a}\, \mathrm {log}\left (\sqrt {e}\, \sqrt {c d x +a e}+\sqrt {2 \sqrt {c}\, \sqrt {a}\, d e +a \,e^{2}+c \,d^{2}}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}\right ) e^{2} x -\sqrt {e}\, \sqrt {d}\, \sqrt {a}\, \mathrm {log}\left (2 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}\, \sqrt {c d x +a e}+2 \sqrt {c}\, \sqrt {a}\, d e +2 c d e x \right ) d e -\sqrt {e}\, \sqrt {d}\, \sqrt {a}\, \mathrm {log}\left (2 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}\, \sqrt {c d x +a e}+2 \sqrt {c}\, \sqrt {a}\, d e +2 c d e x \right ) e^{2} x +2 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, d^{2}+2 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, d e x}{d^{2} e \left (e x +d \right )} \] Input:

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x/(e*x+d)^2,x)
 

Output:

(2*sqrt(d + e*x)*sqrt(a*e + c*d*x)*d*e + sqrt(e)*sqrt(d)*sqrt(a)*log(sqrt( 
e)*sqrt(a*e + c*d*x) - sqrt(2*sqrt(c)*sqrt(a)*d*e + a*e**2 + c*d**2) + sqr 
t(d)*sqrt(c)*sqrt(d + e*x))*d*e + sqrt(e)*sqrt(d)*sqrt(a)*log(sqrt(e)*sqrt 
(a*e + c*d*x) - sqrt(2*sqrt(c)*sqrt(a)*d*e + a*e**2 + c*d**2) + sqrt(d)*sq 
rt(c)*sqrt(d + e*x))*e**2*x + sqrt(e)*sqrt(d)*sqrt(a)*log(sqrt(e)*sqrt(a*e 
 + c*d*x) + sqrt(2*sqrt(c)*sqrt(a)*d*e + a*e**2 + c*d**2) + sqrt(d)*sqrt(c 
)*sqrt(d + e*x))*d*e + sqrt(e)*sqrt(d)*sqrt(a)*log(sqrt(e)*sqrt(a*e + c*d* 
x) + sqrt(2*sqrt(c)*sqrt(a)*d*e + a*e**2 + c*d**2) + sqrt(d)*sqrt(c)*sqrt( 
d + e*x))*e**2*x - sqrt(e)*sqrt(d)*sqrt(a)*log(2*sqrt(e)*sqrt(d)*sqrt(c)*s 
qrt(d + e*x)*sqrt(a*e + c*d*x) + 2*sqrt(c)*sqrt(a)*d*e + 2*c*d*e*x)*d*e - 
sqrt(e)*sqrt(d)*sqrt(a)*log(2*sqrt(e)*sqrt(d)*sqrt(c)*sqrt(d + e*x)*sqrt(a 
*e + c*d*x) + 2*sqrt(c)*sqrt(a)*d*e + 2*c*d*e*x)*e**2*x + 2*sqrt(e)*sqrt(d 
)*sqrt(c)*d**2 + 2*sqrt(e)*sqrt(d)*sqrt(c)*d*e*x)/(d**2*e*(d + e*x))