\(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{x^4 (d+e x)} \, dx\) [35]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 40, antiderivative size = 194 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^4 (d+e x)} \, dx=-\frac {\left (\frac {c}{a e}-\frac {e}{d^2}\right ) \left (2 a d e+\left (c d^2+a e^2\right ) x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 x^2}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 d x^3}+\frac {\left (c d^2-a e^2\right )^3 \text {arctanh}\left (\frac {\sqrt {a} \sqrt {e} (d+e x)}{\sqrt {d} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 a^{3/2} d^{5/2} e^{3/2}} \] Output:

-1/8*(c/a/e-e/d^2)*(2*a*d*e+(a*e^2+c*d^2)*x)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e* 
x^2)^(1/2)/x^2-1/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/d/x^3+1/8*(-a*e 
^2+c*d^2)^3*arctanh(a^(1/2)*e^(1/2)*(e*x+d)/d^(1/2)/(a*d*e+(a*e^2+c*d^2)*x 
+c*d*e*x^2)^(1/2))/a^(3/2)/d^(5/2)/e^(3/2)
 

Mathematica [A] (verified)

Time = 0.56 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.04 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^4 (d+e x)} \, dx=\frac {\left (-c d^2+a e^2\right )^3 \sqrt {(a e+c d x) (d+e x)} \left (\frac {\sqrt {a} \sqrt {d} \sqrt {e} \left (3 c^2 d^4 x^2+2 a c d^2 e x (7 d+4 e x)+a^2 e^2 \left (8 d^2+2 d e x-3 e^2 x^2\right )\right )}{\left (c d^2-a e^2\right )^3 x^3}-\frac {3 \text {arctanh}\left (\frac {\sqrt {a} \sqrt {e} \sqrt {d+e x}}{\sqrt {d} \sqrt {a e+c d x}}\right )}{\sqrt {a e+c d x} \sqrt {d+e x}}\right )}{24 a^{3/2} d^{5/2} e^{3/2}} \] Input:

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(x^4*(d + e*x)),x]
 

Output:

((-(c*d^2) + a*e^2)^3*Sqrt[(a*e + c*d*x)*(d + e*x)]*((Sqrt[a]*Sqrt[d]*Sqrt 
[e]*(3*c^2*d^4*x^2 + 2*a*c*d^2*e*x*(7*d + 4*e*x) + a^2*e^2*(8*d^2 + 2*d*e* 
x - 3*e^2*x^2)))/((c*d^2 - a*e^2)^3*x^3) - (3*ArcTanh[(Sqrt[a]*Sqrt[e]*Sqr 
t[d + e*x])/(Sqrt[d]*Sqrt[a*e + c*d*x])])/(Sqrt[a*e + c*d*x]*Sqrt[d + e*x] 
)))/(24*a^(3/2)*d^(5/2)*e^(3/2))
 

Rubi [A] (verified)

Time = 0.72 (sec) , antiderivative size = 225, normalized size of antiderivative = 1.16, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {1215, 1228, 1152, 1154, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{x^4 (d+e x)} \, dx\)

\(\Big \downarrow \) 1215

\(\displaystyle \int \frac {(a e+c d x) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{x^4}dx\)

\(\Big \downarrow \) 1228

\(\displaystyle \frac {\left (c d^2-a e^2\right ) \int \frac {\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}{x^3}dx}{2 d}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 d x^3}\)

\(\Big \downarrow \) 1152

\(\displaystyle \frac {\left (c d^2-a e^2\right ) \left (-\frac {\left (c d^2-a e^2\right )^2 \int \frac {1}{x \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{8 a d e}-\frac {\left (x \left (a e^2+c d^2\right )+2 a d e\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 a d e x^2}\right )}{2 d}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 d x^3}\)

\(\Big \downarrow \) 1154

\(\displaystyle \frac {\left (c d^2-a e^2\right ) \left (\frac {\left (c d^2-a e^2\right )^2 \int \frac {1}{4 a d e-\frac {\left (2 a d e+\left (c d^2+a e^2\right ) x\right )^2}{c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}d\frac {2 a d e+\left (c d^2+a e^2\right ) x}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}}{4 a d e}-\frac {\left (x \left (a e^2+c d^2\right )+2 a d e\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 a d e x^2}\right )}{2 d}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 d x^3}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\left (c d^2-a e^2\right ) \left (\frac {\left (c d^2-a e^2\right )^2 \text {arctanh}\left (\frac {x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 a^{3/2} d^{3/2} e^{3/2}}-\frac {\left (x \left (a e^2+c d^2\right )+2 a d e\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 a d e x^2}\right )}{2 d}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 d x^3}\)

Input:

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(x^4*(d + e*x)),x]
 

Output:

-1/3*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(d*x^3) + ((c*d^2 - a*e 
^2)*(-1/4*((2*a*d*e + (c*d^2 + a*e^2)*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + 
c*d*e*x^2])/(a*d*e*x^2) + ((c*d^2 - a*e^2)^2*ArcTanh[(2*a*d*e + (c*d^2 + a 
*e^2)*x)/(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e 
*x^2])])/(8*a^(3/2)*d^(3/2)*e^(3/2))))/(2*d)
 

Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1152
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[(-(d + e*x)^(m + 1))*(d*b - 2*a*e + (2*c*d - b*e)*x)*((a + b 
*x + c*x^2)^p/(2*(m + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Simp[p*((b^2 - 4*a 
*c)/(2*(m + 1)*(c*d^2 - b*d*e + a*e^2)))   Int[(d + e*x)^(m + 2)*(a + b*x + 
 c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[m + 2*p + 2, 0] 
 && GtQ[p, 0]
 

rule 1154
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Sym 
bol] :> Simp[-2   Subst[Int[1/(4*c*d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, ( 
2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c 
, d, e}, x]
 

rule 1215
Int[(((f_.) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/( 
(d_) + (e_.)*(x_)), x_Symbol] :> Int[(a/d + c*(x/e))*(f + g*x)^n*(a + b*x + 
 c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[c*d^2 - 
 b*d*e + a*e^2, 0] && GtQ[p, 0]
 

rule 1228
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(e*f - d*g))*(d + e*x)^(m + 1)*((a + 
 b*x + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2))), x] - Simp[(b*(e 
*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2))   Int[(d + e*x)^ 
(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x 
] && EqQ[Simplify[m + 2*p + 3], 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(4329\) vs. \(2(170)=340\).

Time = 3.26 (sec) , antiderivative size = 4330, normalized size of antiderivative = 22.32

method result size
default \(\text {Expression too large to display}\) \(4330\)

Input:

int((a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(3/2)/x^4/(e*x+d),x,method=_RETURNVE 
RBOSE)
 

Output:

1/d*(-1/3/a/d/e/x^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(5/2)-1/6*(a*e^2+c*d 
^2)/a/d/e*(-1/2/a/d/e/x^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(5/2)+1/4*(a*e 
^2+c*d^2)/a/d/e*(-1/a/d/e/x*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(5/2)+3/2*(a 
*e^2+c*d^2)/a/d/e*(1/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(3/2)+1/2*(a*e^2+ 
c*d^2)*(1/4*(2*c*d*e*x+a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2 
)/c/d/e+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/d/e/c*ln((1/2*a*e^2+1/2*c*d^2+ 
c*d*x*e)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2))/(d*e*c)^(1 
/2))+a*d*e*((a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)+1/2*(a*e^2+c*d^2)*ln(( 
1/2*a*e^2+1/2*c*d^2+c*d*x*e)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2* 
e)^(1/2))/(d*e*c)^(1/2)-a*d*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2* 
(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2))/x)))+4*c/a*(1/8*(2* 
c*d*e*x+a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(3/2)/c/d/e+3/16*(4 
*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/d/e/c*(1/4*(2*c*d*e*x+a*e^2+c*d^2)*(a*d*e+(a 
*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)/c/d/e+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/d 
/e/c*ln((1/2*a*e^2+1/2*c*d^2+c*d*x*e)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x 
+c*d*x^2*e)^(1/2))/(d*e*c)^(1/2))))+3/2*c/a*(1/3*(a*d*e+(a*e^2+c*d^2)*x+c* 
d*x^2*e)^(3/2)+1/2*(a*e^2+c*d^2)*(1/4*(2*c*d*e*x+a*e^2+c*d^2)*(a*d*e+(a*e^ 
2+c*d^2)*x+c*d*x^2*e)^(1/2)/c/d/e+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/d/e/ 
c*ln((1/2*a*e^2+1/2*c*d^2+c*d*x*e)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c* 
d*x^2*e)^(1/2))/(d*e*c)^(1/2))+a*d*e*((a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)...
 

Fricas [A] (verification not implemented)

Time = 0.75 (sec) , antiderivative size = 558, normalized size of antiderivative = 2.88 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^4 (d+e x)} \, dx=\left [-\frac {3 \, {\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \sqrt {a d e} x^{3} \log \left (\frac {8 \, a^{2} d^{2} e^{2} + {\left (c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} x^{2} - 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {a d e} + 8 \, {\left (a c d^{3} e + a^{2} d e^{3}\right )} x}{x^{2}}\right ) + 4 \, {\left (8 \, a^{3} d^{3} e^{3} + {\left (3 \, a c^{2} d^{5} e + 8 \, a^{2} c d^{3} e^{3} - 3 \, a^{3} d e^{5}\right )} x^{2} + 2 \, {\left (7 \, a^{2} c d^{4} e^{2} + a^{3} d^{2} e^{4}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{96 \, a^{2} d^{3} e^{2} x^{3}}, -\frac {3 \, {\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \sqrt {-a d e} x^{3} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {-a d e}}{2 \, {\left (a c d^{2} e^{2} x^{2} + a^{2} d^{2} e^{2} + {\left (a c d^{3} e + a^{2} d e^{3}\right )} x\right )}}\right ) + 2 \, {\left (8 \, a^{3} d^{3} e^{3} + {\left (3 \, a c^{2} d^{5} e + 8 \, a^{2} c d^{3} e^{3} - 3 \, a^{3} d e^{5}\right )} x^{2} + 2 \, {\left (7 \, a^{2} c d^{4} e^{2} + a^{3} d^{2} e^{4}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{48 \, a^{2} d^{3} e^{2} x^{3}}\right ] \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x^4/(e*x+d),x, algorithm 
="fricas")
 

Output:

[-1/96*(3*(c^3*d^6 - 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - a^3*e^6)*sqrt(a*d 
*e)*x^3*log((8*a^2*d^2*e^2 + (c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4)*x^2 - 4*s 
qrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*s 
qrt(a*d*e) + 8*(a*c*d^3*e + a^2*d*e^3)*x)/x^2) + 4*(8*a^3*d^3*e^3 + (3*a*c 
^2*d^5*e + 8*a^2*c*d^3*e^3 - 3*a^3*d*e^5)*x^2 + 2*(7*a^2*c*d^4*e^2 + a^3*d 
^2*e^4)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(a^2*d^3*e^2*x^3), 
 -1/48*(3*(c^3*d^6 - 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - a^3*e^6)*sqrt(-a* 
d*e)*x^3*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + 
 (c*d^2 + a*e^2)*x)*sqrt(-a*d*e)/(a*c*d^2*e^2*x^2 + a^2*d^2*e^2 + (a*c*d^3 
*e + a^2*d*e^3)*x)) + 2*(8*a^3*d^3*e^3 + (3*a*c^2*d^5*e + 8*a^2*c*d^3*e^3 
- 3*a^3*d*e^5)*x^2 + 2*(7*a^2*c*d^4*e^2 + a^3*d^2*e^4)*x)*sqrt(c*d*e*x^2 + 
 a*d*e + (c*d^2 + a*e^2)*x))/(a^2*d^3*e^2*x^3)]
                                                                                    
                                                                                    
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^4 (d+e x)} \, dx=\text {Timed out} \] Input:

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/x**4/(e*x+d),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^4 (d+e x)} \, dx=\int { \frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}}}{{\left (e x + d\right )} x^{4}} \,d x } \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x^4/(e*x+d),x, algorithm 
="maxima")
 

Output:

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)/((e*x + d)*x^4), x 
)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1005 vs. \(2 (170) = 340\).

Time = 0.15 (sec) , antiderivative size = 1005, normalized size of antiderivative = 5.18 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^4 (d+e x)} \, dx =\text {Too large to display} \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x^4/(e*x+d),x, algorithm 
="giac")
 

Output:

-1/8*(c^3*d^6 - 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - a^3*e^6)*arctan(-(sqrt 
(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))/sqrt(-a*d*e))/(sq 
rt(-a*d*e)*a*d^2*e) + 1/24*(3*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + 
a*e^2*x + a*d*e))*a^2*c^3*d^8*e^2 - 9*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c* 
d^2*x + a*e^2*x + a*d*e))*a^3*c^2*d^6*e^4 - 39*(sqrt(c*d*e)*x - sqrt(c*d*e 
*x^2 + c*d^2*x + a*e^2*x + a*d*e))*a^4*c*d^4*e^6 - 3*(sqrt(c*d*e)*x - sqrt 
(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))*a^5*d^2*e^8 - 16*sqrt(c*d*e)*a^4* 
c*d^5*e^5 - 8*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e) 
)^3*a*c^3*d^7*e - 72*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + 
 a*d*e))^3*a^2*c^2*d^5*e^3 - 72*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x 
+ a*e^2*x + a*d*e))^3*a^3*c*d^3*e^5 - 8*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + 
c*d^2*x + a*e^2*x + a*d*e))^3*a^4*d*e^7 - 48*sqrt(c*d*e)*(sqrt(c*d*e)*x - 
sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^2*a^3*c*d^4*e^4 - 48*sqrt(c*d 
*e)*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^2*a^4*d^ 
2*e^6 - 3*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^5* 
c^3*d^6 - 39*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e)) 
^5*a*c^2*d^4*e^2 - 9*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + 
 a*d*e))^5*a^2*c*d^2*e^4 + 3*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a 
*e^2*x + a*d*e))^5*a^3*e^6 - 48*sqrt(c*d*e)*(sqrt(c*d*e)*x - sqrt(c*d*e*x^ 
2 + c*d^2*x + a*e^2*x + a*d*e))^4*a*c^2*d^5*e - 96*sqrt(c*d*e)*(sqrt(c*...
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^4 (d+e x)} \, dx=\int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}}{x^4\,\left (d+e\,x\right )} \,d x \] Input:

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/(x^4*(d + e*x)),x)
 

Output:

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/(x^4*(d + e*x)), x)
 

Reduce [B] (verification not implemented)

Time = 0.71 (sec) , antiderivative size = 1116, normalized size of antiderivative = 5.75 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^4 (d+e x)} \, dx =\text {Too large to display} \] Input:

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x^4/(e*x+d),x)
 

Output:

( - 16*sqrt(d + e*x)*sqrt(a*e + c*d*x)*a**4*d**3*e**5 - 4*sqrt(d + e*x)*sq 
rt(a*e + c*d*x)*a**4*d**2*e**6*x + 6*sqrt(d + e*x)*sqrt(a*e + c*d*x)*a**4* 
d*e**7*x**2 - 16*sqrt(d + e*x)*sqrt(a*e + c*d*x)*a**3*c*d**5*e**3 - 32*sqr 
t(d + e*x)*sqrt(a*e + c*d*x)*a**3*c*d**4*e**4*x - 10*sqrt(d + e*x)*sqrt(a* 
e + c*d*x)*a**3*c*d**3*e**5*x**2 - 28*sqrt(d + e*x)*sqrt(a*e + c*d*x)*a**2 
*c**2*d**6*e**2*x - 22*sqrt(d + e*x)*sqrt(a*e + c*d*x)*a**2*c**2*d**5*e**3 
*x**2 - 6*sqrt(d + e*x)*sqrt(a*e + c*d*x)*a*c**3*d**7*e*x**2 + 3*sqrt(e)*s 
qrt(d)*sqrt(a)*log(sqrt(e)*sqrt(a*e + c*d*x) - sqrt(2*sqrt(c)*sqrt(a)*d*e 
+ a*e**2 + c*d**2) + sqrt(d)*sqrt(c)*sqrt(d + e*x))*a**4*e**8*x**3 - 6*sqr 
t(e)*sqrt(d)*sqrt(a)*log(sqrt(e)*sqrt(a*e + c*d*x) - sqrt(2*sqrt(c)*sqrt(a 
)*d*e + a*e**2 + c*d**2) + sqrt(d)*sqrt(c)*sqrt(d + e*x))*a**3*c*d**2*e**6 
*x**3 + 6*sqrt(e)*sqrt(d)*sqrt(a)*log(sqrt(e)*sqrt(a*e + c*d*x) - sqrt(2*s 
qrt(c)*sqrt(a)*d*e + a*e**2 + c*d**2) + sqrt(d)*sqrt(c)*sqrt(d + e*x))*a*c 
**3*d**6*e**2*x**3 - 3*sqrt(e)*sqrt(d)*sqrt(a)*log(sqrt(e)*sqrt(a*e + c*d* 
x) - sqrt(2*sqrt(c)*sqrt(a)*d*e + a*e**2 + c*d**2) + sqrt(d)*sqrt(c)*sqrt( 
d + e*x))*c**4*d**8*x**3 + 3*sqrt(e)*sqrt(d)*sqrt(a)*log(sqrt(e)*sqrt(a*e 
+ c*d*x) + sqrt(2*sqrt(c)*sqrt(a)*d*e + a*e**2 + c*d**2) + sqrt(d)*sqrt(c) 
*sqrt(d + e*x))*a**4*e**8*x**3 - 6*sqrt(e)*sqrt(d)*sqrt(a)*log(sqrt(e)*sqr 
t(a*e + c*d*x) + sqrt(2*sqrt(c)*sqrt(a)*d*e + a*e**2 + c*d**2) + sqrt(d)*s 
qrt(c)*sqrt(d + e*x))*a**3*c*d**2*e**6*x**3 + 6*sqrt(e)*sqrt(d)*sqrt(a)...