\(\int \frac {d+e x}{x \sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\) [76]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 38, antiderivative size = 137 \[ \int \frac {d+e x}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {2 \sqrt {e} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} (d+e x)}{\sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{\sqrt {c} \sqrt {d}}-\frac {2 \sqrt {d} \text {arctanh}\left (\frac {\sqrt {a} \sqrt {e} (d+e x)}{\sqrt {d} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{\sqrt {a} \sqrt {e}} \] Output:

2*e^(1/2)*arctanh(c^(1/2)*d^(1/2)*(e*x+d)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c 
*d*e*x^2)^(1/2))/c^(1/2)/d^(1/2)-2*d^(1/2)*arctanh(a^(1/2)*e^(1/2)*(e*x+d) 
/d^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/a^(1/2)/e^(1/2)
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(485\) vs. \(2(137)=274\).

Time = 2.27 (sec) , antiderivative size = 485, normalized size of antiderivative = 3.54 \[ \int \frac {d+e x}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=-\frac {2 \sqrt {a e+c d x} \sqrt {d+e x} \left (\sqrt {c} d \left (-\left (\left (-\sqrt {c} d+\sqrt {c d^2-a e^2}\right ) \sqrt {-2 c d^2+a e^2-2 \sqrt {c} d \sqrt {c d^2-a e^2}} \arctan \left (\frac {\sqrt {-2 c d^2+a e^2-2 \sqrt {c} d \sqrt {c d^2-a e^2}} \sqrt {a e+c d x}}{\sqrt {a} \sqrt {c} \sqrt {d} \sqrt {e} \left (\sqrt {d-\frac {a e^2}{c d}}-\sqrt {d+e x}\right )}\right )\right )+\left (\sqrt {c} d+\sqrt {c d^2-a e^2}\right ) \sqrt {-2 c d^2+a e^2+2 \sqrt {c} d \sqrt {c d^2-a e^2}} \arctan \left (\frac {\sqrt {-2 c d^2+a e^2+2 \sqrt {c} d \sqrt {c d^2-a e^2}} \sqrt {a e+c d x}}{\sqrt {a} \sqrt {c} \sqrt {d} \sqrt {e} \left (\sqrt {d-\frac {a e^2}{c d}}-\sqrt {d+e x}\right )}\right )\right )+2 a^{3/2} e^3 \text {arctanh}\left (\frac {\sqrt {e} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \left (\sqrt {d-\frac {a e^2}{c d}}-\sqrt {d+e x}\right )}\right )\right )}{a^{3/2} \sqrt {c} \sqrt {d} e^{5/2} \sqrt {(a e+c d x) (d+e x)}} \] Input:

Integrate[(d + e*x)/(x*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]
 

Output:

(-2*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*(Sqrt[c]*d*(-((-(Sqrt[c]*d) + Sqrt[c*d 
^2 - a*e^2])*Sqrt[-2*c*d^2 + a*e^2 - 2*Sqrt[c]*d*Sqrt[c*d^2 - a*e^2]]*ArcT 
an[(Sqrt[-2*c*d^2 + a*e^2 - 2*Sqrt[c]*d*Sqrt[c*d^2 - a*e^2]]*Sqrt[a*e + c* 
d*x])/(Sqrt[a]*Sqrt[c]*Sqrt[d]*Sqrt[e]*(Sqrt[d - (a*e^2)/(c*d)] - Sqrt[d + 
 e*x]))]) + (Sqrt[c]*d + Sqrt[c*d^2 - a*e^2])*Sqrt[-2*c*d^2 + a*e^2 + 2*Sq 
rt[c]*d*Sqrt[c*d^2 - a*e^2]]*ArcTan[(Sqrt[-2*c*d^2 + a*e^2 + 2*Sqrt[c]*d*S 
qrt[c*d^2 - a*e^2]]*Sqrt[a*e + c*d*x])/(Sqrt[a]*Sqrt[c]*Sqrt[d]*Sqrt[e]*(S 
qrt[d - (a*e^2)/(c*d)] - Sqrt[d + e*x]))]) + 2*a^(3/2)*e^3*ArcTanh[(Sqrt[e 
]*Sqrt[a*e + c*d*x])/(Sqrt[c]*Sqrt[d]*(Sqrt[d - (a*e^2)/(c*d)] - Sqrt[d + 
e*x]))]))/(a^(3/2)*Sqrt[c]*Sqrt[d]*e^(5/2)*Sqrt[(a*e + c*d*x)*(d + e*x)])
 

Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.18, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {1268, 140, 27, 66, 104, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {d+e x}{x \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \, dx\)

\(\Big \downarrow \) 1268

\(\displaystyle \frac {\sqrt {d+e x} \sqrt {a e+c d x} \int \frac {\sqrt {d+e x}}{x \sqrt {a e+c d x}}dx}{\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

\(\Big \downarrow \) 140

\(\displaystyle \frac {\sqrt {d+e x} \sqrt {a e+c d x} \left (e \int \frac {1}{\sqrt {a e+c d x} \sqrt {d+e x}}dx+\int \frac {d}{x \sqrt {a e+c d x} \sqrt {d+e x}}dx\right )}{\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {d+e x} \sqrt {a e+c d x} \left (e \int \frac {1}{\sqrt {a e+c d x} \sqrt {d+e x}}dx+d \int \frac {1}{x \sqrt {a e+c d x} \sqrt {d+e x}}dx\right )}{\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

\(\Big \downarrow \) 66

\(\displaystyle \frac {\sqrt {d+e x} \sqrt {a e+c d x} \left (d \int \frac {1}{x \sqrt {a e+c d x} \sqrt {d+e x}}dx+2 e \int \frac {1}{c d-\frac {e (a e+c d x)}{d+e x}}d\frac {\sqrt {a e+c d x}}{\sqrt {d+e x}}\right )}{\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

\(\Big \downarrow \) 104

\(\displaystyle \frac {\sqrt {d+e x} \sqrt {a e+c d x} \left (2 e \int \frac {1}{c d-\frac {e (a e+c d x)}{d+e x}}d\frac {\sqrt {a e+c d x}}{\sqrt {d+e x}}+2 d \int \frac {1}{\frac {a e (d+e x)}{a e+c d x}-d}d\frac {\sqrt {d+e x}}{\sqrt {a e+c d x}}\right )}{\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\sqrt {d+e x} \sqrt {a e+c d x} \left (\frac {2 \sqrt {e} \text {arctanh}\left (\frac {\sqrt {e} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {d+e x}}\right )}{\sqrt {c} \sqrt {d}}-\frac {2 \sqrt {d} \text {arctanh}\left (\frac {\sqrt {a} \sqrt {e} \sqrt {d+e x}}{\sqrt {d} \sqrt {a e+c d x}}\right )}{\sqrt {a} \sqrt {e}}\right )}{\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

Input:

Int[(d + e*x)/(x*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]
 

Output:

(Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*((2*Sqrt[e]*ArcTanh[(Sqrt[e]*Sqrt[a*e + c 
*d*x])/(Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])])/(Sqrt[c]*Sqrt[d]) - (2*Sqrt[d]*Ar 
cTanh[(Sqrt[a]*Sqrt[e]*Sqrt[d + e*x])/(Sqrt[d]*Sqrt[a*e + c*d*x])])/(Sqrt[ 
a]*Sqrt[e])))/Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 66
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ 
2   Subst[Int[1/(b - d*x^2), x], x, Sqrt[a + b*x]/Sqrt[c + d*x]], x] /; Fre 
eQ[{a, b, c, d}, x] &&  !GtQ[c - a*(d/b), 0]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 140
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*d^(m + n)*f^p   Int[(a + b*x)^(m - 1)/(c + d*x)^m, x] 
, x] + Int[(a + b*x)^(m - 1)*((e + f*x)^p/(c + d*x)^m)*ExpandToSum[(a + b*x 
)*(c + d*x)^(-p - 1) - (b*d^(-p - 1)*f^p)/(e + f*x)^p, x], x] /; FreeQ[{a, 
b, c, d, e, f, m, n}, x] && EqQ[m + n + p + 1, 0] && ILtQ[p, 0] && (GtQ[m, 
0] || SumSimplerQ[m, -1] ||  !(GtQ[n, 0] || SumSimplerQ[n, -1]))
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 1268
Int[((d_) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_ 
) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(a + b*x + c*x^2)^FracPart[p]/((d 
 + e*x)^FracPart[p]*(a/d + (c*x)/e)^FracPart[p])   Int[(d + e*x)^(m + p)*(f 
 + g*x)^n*(a/d + (c/e)*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n}, x 
] && EqQ[c*d^2 - b*d*e + a*e^2, 0]
 
Maple [A] (verified)

Time = 2.16 (sec) , antiderivative size = 132, normalized size of antiderivative = 0.96

method result size
default \(\frac {e \ln \left (\frac {\frac {1}{2} a \,e^{2}+\frac {1}{2} c \,d^{2}+c d x e}{\sqrt {d e c}}+\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}\right )}{\sqrt {d e c}}-\frac {d \ln \left (\frac {2 a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +2 \sqrt {a d e}\, \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}{x}\right )}{\sqrt {a d e}}\) \(132\)

Input:

int((e*x+d)/x/(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2),x,method=_RETURNVERB 
OSE)
 

Output:

e*ln((1/2*a*e^2+1/2*c*d^2+c*d*x*e)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c* 
d*x^2*e)^(1/2))/(d*e*c)^(1/2)-d/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+ 
2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2))/x)
 

Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 975, normalized size of antiderivative = 7.12 \[ \int \frac {d+e x}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx =\text {Too large to display} \] Input:

integrate((e*x+d)/x/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm=" 
fricas")
                                                                                    
                                                                                    
 

Output:

[1/2*sqrt(e/(c*d))*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e 
^4 + 8*(c^2*d^3*e + a*c*d*e^3)*x + 4*(2*c^2*d^2*e*x + c^2*d^3 + a*c*d*e^2) 
*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e/(c*d))) + 1/2*sqrt(d/( 
a*e))*log((8*a^2*d^2*e^2 + (c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4)*x^2 + 8*(a* 
c*d^3*e + a^2*d*e^3)*x - 4*(2*a^2*d*e^2 + (a*c*d^2*e + a^2*e^3)*x)*sqrt(c* 
d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(d/(a*e)))/x^2), -sqrt(-e/(c*d))* 
arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 
+ a*e^2)*sqrt(-e/(c*d))/(c*d*e^2*x^2 + a*d*e^2 + (c*d^2*e + a*e^3)*x)) + 1 
/2*sqrt(d/(a*e))*log((8*a^2*d^2*e^2 + (c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4)* 
x^2 + 8*(a*c*d^3*e + a^2*d*e^3)*x - 4*(2*a^2*d*e^2 + (a*c*d^2*e + a^2*e^3) 
*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(d/(a*e)))/x^2), sqrt( 
-d/(a*e))*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e 
+ (c*d^2 + a*e^2)*x)*sqrt(-d/(a*e))/(c*d^2*e*x^2 + a*d^2*e + (c*d^3 + a*d* 
e^2)*x)) + 1/2*sqrt(e/(c*d))*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e 
^2 + a^2*e^4 + 8*(c^2*d^3*e + a*c*d*e^3)*x + 4*(2*c^2*d^2*e*x + c^2*d^3 + 
a*c*d*e^2)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e/(c*d))), sqr 
t(-d/(a*e))*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d* 
e + (c*d^2 + a*e^2)*x)*sqrt(-d/(a*e))/(c*d^2*e*x^2 + a*d^2*e + (c*d^3 + a* 
d*e^2)*x)) - sqrt(-e/(c*d))*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a 
*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-e/(c*d))/(c*d*e^2*x^2 + a*d*...
 

Sympy [F]

\[ \int \frac {d+e x}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int \frac {d + e x}{x \sqrt {\left (d + e x\right ) \left (a e + c d x\right )}}\, dx \] Input:

integrate((e*x+d)/x/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)
 

Output:

Integral((d + e*x)/(x*sqrt((d + e*x)*(a*e + c*d*x))), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {d+e x}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((e*x+d)/x/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm=" 
maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(a*e^2-c*d^2>0)', see `assume?` f 
or more de
 

Giac [F(-2)]

Exception generated. \[ \int \frac {d+e x}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((e*x+d)/x/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm=" 
giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:index.cc index_m operator + Error: 
Bad Argument Value
 

Mupad [B] (verification not implemented)

Time = 6.12 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.86 \[ \int \frac {d+e x}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {e\,\ln \left (2\,\sqrt {\left (a\,e+c\,d\,x\right )\,\left (d+e\,x\right )}\,\sqrt {c\,d\,e}+a\,e^2+c\,d^2+2\,c\,d\,e\,x\right )}{\sqrt {c\,d\,e}}-\frac {d\,\ln \left (\frac {a\,e^2}{2}+\frac {c\,d^2}{2}+\frac {\sqrt {a\,d\,e}\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{x}+\frac {a\,d\,e}{x}\right )}{\sqrt {a\,d\,e}} \] Input:

int((d + e*x)/(x*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)),x)
 

Output:

(e*log(2*((a*e + c*d*x)*(d + e*x))^(1/2)*(c*d*e)^(1/2) + a*e^2 + c*d^2 + 2 
*c*d*e*x))/(c*d*e)^(1/2) - (d*log((a*e^2)/2 + (c*d^2)/2 + ((a*d*e)^(1/2)*( 
x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2))/x + (a*d*e)/x))/(a*d*e)^(1/2 
)
 

Reduce [B] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 212, normalized size of antiderivative = 1.55 \[ \int \frac {d+e x}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {\sqrt {e}\, \sqrt {d}\, \left (\sqrt {a}\, \mathrm {log}\left (\sqrt {e}\, \sqrt {c d x +a e}-\sqrt {2 \sqrt {c}\, \sqrt {a}\, d e +a \,e^{2}+c \,d^{2}}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}\right ) c d +\sqrt {a}\, \mathrm {log}\left (\sqrt {e}\, \sqrt {c d x +a e}+\sqrt {2 \sqrt {c}\, \sqrt {a}\, d e +a \,e^{2}+c \,d^{2}}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}\right ) c d -\sqrt {a}\, \mathrm {log}\left (2 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}\, \sqrt {c d x +a e}+2 \sqrt {c}\, \sqrt {a}\, d e +2 c d e x \right ) c d +2 \sqrt {c}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}}{\sqrt {a \,e^{2}-c \,d^{2}}}\right ) a e \right )}{a c d e} \] Input:

int((e*x+d)/x/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x)
 

Output:

(sqrt(e)*sqrt(d)*(sqrt(a)*log(sqrt(e)*sqrt(a*e + c*d*x) - sqrt(2*sqrt(c)*s 
qrt(a)*d*e + a*e**2 + c*d**2) + sqrt(d)*sqrt(c)*sqrt(d + e*x))*c*d + sqrt( 
a)*log(sqrt(e)*sqrt(a*e + c*d*x) + sqrt(2*sqrt(c)*sqrt(a)*d*e + a*e**2 + c 
*d**2) + sqrt(d)*sqrt(c)*sqrt(d + e*x))*c*d - sqrt(a)*log(2*sqrt(e)*sqrt(d 
)*sqrt(c)*sqrt(d + e*x)*sqrt(a*e + c*d*x) + 2*sqrt(c)*sqrt(a)*d*e + 2*c*d* 
e*x)*c*d + 2*sqrt(c)*log((sqrt(e)*sqrt(a*e + c*d*x) + sqrt(d)*sqrt(c)*sqrt 
(d + e*x))/sqrt(a*e**2 - c*d**2))*a*e))/(a*c*d*e)