\(\int \frac {(d+e x)^{3/2}}{(f+g x) \sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\) [132]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 46, antiderivative size = 139 \[ \int \frac {(d+e x)^{3/2}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {2 e \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{c d g \sqrt {d+e x}}+\frac {2 (e f-d g) \arctan \left (\frac {\sqrt {c d f-a e g} \sqrt {d+e x}}{\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{g^{3/2} \sqrt {c d f-a e g}} \] Output:

2*e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c/d/g/(e*x+d)^(1/2)+2*(-d*g+e* 
f)*arctan(1/g^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*(-a*e*g+c*d*f) 
^(1/2)*(e*x+d)^(1/2))/g^(3/2)/(-a*e*g+c*d*f)^(1/2)
 

Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.01 \[ \int \frac {(d+e x)^{3/2}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {2 \sqrt {d+e x} \left (e \sqrt {g} \sqrt {c d f-a e g} (a e+c d x)+c d (-e f+d g) \sqrt {a e+c d x} \arctan \left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c d f-a e g}}\right )\right )}{c d g^{3/2} \sqrt {c d f-a e g} \sqrt {(a e+c d x) (d+e x)}} \] Input:

Integrate[(d + e*x)^(3/2)/((f + g*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d* 
e*x^2]),x]
 

Output:

(2*Sqrt[d + e*x]*(e*Sqrt[g]*Sqrt[c*d*f - a*e*g]*(a*e + c*d*x) + c*d*(-(e*f 
) + d*g)*Sqrt[a*e + c*d*x]*ArcTan[(Sqrt[g]*Sqrt[a*e + c*d*x])/Sqrt[c*d*f - 
 a*e*g]]))/(c*d*g^(3/2)*Sqrt[c*d*f - a*e*g]*Sqrt[(a*e + c*d*x)*(d + e*x)])
 

Rubi [A] (verified)

Time = 0.61 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {1258, 1255, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(d+e x)^{3/2}}{(f+g x) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \, dx\)

\(\Big \downarrow \) 1258

\(\displaystyle \frac {2 e \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c d g \sqrt {d+e x}}-\frac {(e f-d g) \int \frac {\sqrt {d+e x}}{(f+g x) \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{g}\)

\(\Big \downarrow \) 1255

\(\displaystyle \frac {2 e \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c d g \sqrt {d+e x}}-\frac {2 e^2 (e f-d g) \int \frac {1}{(c d f-a e g) e^2+\frac {g \left (c d e x^2+\left (c d^2+a e^2\right ) x+a d e\right ) e^2}{d+e x}}d\frac {\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}{\sqrt {d+e x}}}{g}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {2 e \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c d g \sqrt {d+e x}}-\frac {2 (e f-d g) \arctan \left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{g^{3/2} \sqrt {c d f-a e g}}\)

Input:

Int[(d + e*x)^(3/2)/((f + g*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2] 
),x]
 

Output:

(2*e*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(c*d*g*Sqrt[d + e*x]) - 
(2*(e*f - d*g)*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2] 
)/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(g^(3/2)*Sqrt[c*d*f - a*e*g])
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1255
Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + 
 (c_.)*(x_)^2]), x_Symbol] :> Simp[2*e^2   Subst[Int[1/(c*(e*f + d*g) - b*e 
*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{ 
a, b, c, d, e, f, g}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0]
 

rule 1258
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
+ (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e^2*(d + e*x)^(m - 2)*(f + g*x)^(n 
+ 1)*((a + b*x + c*x^2)^(p + 1)/(c*g*(n + p + 2))), x] - Simp[(b*e*g*(n + 1 
) + c*e*f*(p + 1) - c*d*g*(2*n + p + 3))/(c*g*(n + p + 2))   Int[(d + e*x)^ 
(m - 1)*(f + g*x)^n*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, 
 g, m, n, p}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p - 1, 0] && 
!LtQ[n, -1] && IntegerQ[2*p]
 
Maple [A] (verified)

Time = 2.98 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.10

method result size
default \(-\frac {2 \sqrt {\left (e x +d \right ) \left (c d x +a e \right )}\, \left (\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -d f c \right ) g}}\right ) c \,d^{2} g -\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -d f c \right ) g}}\right ) c d e f -e \sqrt {c d x +a e}\, \sqrt {\left (a e g -d f c \right ) g}\right )}{\sqrt {e x +d}\, \sqrt {c d x +a e}\, d c g \sqrt {\left (a e g -d f c \right ) g}}\) \(153\)

Input:

int((e*x+d)^(3/2)/(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2),x,method 
=_RETURNVERBOSE)
 

Output:

-2*((e*x+d)*(c*d*x+a*e))^(1/2)*(arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f) 
*g)^(1/2))*c*d^2*g-arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*c* 
d*e*f-e*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2))/(e*x+d)^(1/2)/(c*d*x+a* 
e)^(1/2)/d/c/g/((a*e*g-c*d*f)*g)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 512, normalized size of antiderivative = 3.68 \[ \int \frac {(d+e x)^{3/2}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\left [\frac {{\left (c d^{2} e f - c d^{3} g + {\left (c d e^{2} f - c d^{2} e g\right )} x\right )} \sqrt {-c d f g + a e g^{2}} \log \left (-\frac {c d e g x^{2} - c d^{2} f + 2 \, a d e g - {\left (c d e f - {\left (c d^{2} + 2 \, a e^{2}\right )} g\right )} x - 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {-c d f g + a e g^{2}} \sqrt {e x + d}}{e g x^{2} + d f + {\left (e f + d g\right )} x}\right ) + 2 \, {\left (c d e f g - a e^{2} g^{2}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{c^{2} d^{3} f g^{2} - a c d^{2} e g^{3} + {\left (c^{2} d^{2} e f g^{2} - a c d e^{2} g^{3}\right )} x}, \frac {2 \, {\left ({\left (c d^{2} e f - c d^{3} g + {\left (c d e^{2} f - c d^{2} e g\right )} x\right )} \sqrt {c d f g - a e g^{2}} \arctan \left (-\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {c d f g - a e g^{2}} \sqrt {e x + d}}{c d^{2} f - a d e g + {\left (c d e f - a e^{2} g\right )} x}\right ) + {\left (c d e f g - a e^{2} g^{2}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}\right )}}{c^{2} d^{3} f g^{2} - a c d^{2} e g^{3} + {\left (c^{2} d^{2} e f g^{2} - a c d e^{2} g^{3}\right )} x}\right ] \] Input:

integrate((e*x+d)^(3/2)/(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, 
 algorithm="fricas")
 

Output:

[((c*d^2*e*f - c*d^3*g + (c*d*e^2*f - c*d^2*e*g)*x)*sqrt(-c*d*f*g + a*e*g^ 
2)*log(-(c*d*e*g*x^2 - c*d^2*f + 2*a*d*e*g - (c*d*e*f - (c*d^2 + 2*a*e^2)* 
g)*x - 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-c*d*f*g + a*e*g 
^2)*sqrt(e*x + d))/(e*g*x^2 + d*f + (e*f + d*g)*x)) + 2*(c*d*e*f*g - a*e^2 
*g^2)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(c^2*d^3* 
f*g^2 - a*c*d^2*e*g^3 + (c^2*d^2*e*f*g^2 - a*c*d*e^2*g^3)*x), 2*((c*d^2*e* 
f - c*d^3*g + (c*d*e^2*f - c*d^2*e*g)*x)*sqrt(c*d*f*g - a*e*g^2)*arctan(-s 
qrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d*f*g - a*e*g^2)*sqrt(e* 
x + d)/(c*d^2*f - a*d*e*g + (c*d*e*f - a*e^2*g)*x)) + (c*d*e*f*g - a*e^2*g 
^2)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(c^2*d^3*f* 
g^2 - a*c*d^2*e*g^3 + (c^2*d^2*e*f*g^2 - a*c*d*e^2*g^3)*x)]
 

Sympy [F]

\[ \int \frac {(d+e x)^{3/2}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int \frac {\left (d + e x\right )^{\frac {3}{2}}}{\sqrt {\left (d + e x\right ) \left (a e + c d x\right )} \left (f + g x\right )}\, dx \] Input:

integrate((e*x+d)**(3/2)/(g*x+f)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/ 
2),x)
 

Output:

Integral((d + e*x)**(3/2)/(sqrt((d + e*x)*(a*e + c*d*x))*(f + g*x)), x)
 

Maxima [F]

\[ \int \frac {(d+e x)^{3/2}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int { \frac {{\left (e x + d\right )}^{\frac {3}{2}}}{\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (g x + f\right )}} \,d x } \] Input:

integrate((e*x+d)^(3/2)/(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, 
 algorithm="maxima")
 

Output:

integrate((e*x + d)^(3/2)/(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(g* 
x + f)), x)
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 132, normalized size of antiderivative = 0.95 \[ \int \frac {(d+e x)^{3/2}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {2 \, {\left (\frac {\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} e}{g {\left | e \right |}} - \frac {{\left (c d e^{3} f - c d^{2} e^{2} g\right )} \arctan \left (\frac {\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} g}{\sqrt {c d f g - a e g^{2}} e}\right )}{\sqrt {c d f g - a e g^{2}} e g {\left | e \right |}}\right )}}{c d} \] Input:

integrate((e*x+d)^(3/2)/(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, 
 algorithm="giac")
 

Output:

2*(sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*e/(g*abs(e)) - (c*d*e^3*f - c*d 
^2*e^2*g)*arctan(sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - 
 a*e*g^2)*e))/(sqrt(c*d*f*g - a*e*g^2)*e*g*abs(e)))/(c*d)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(d+e x)^{3/2}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int \frac {{\left (d+e\,x\right )}^{3/2}}{\left (f+g\,x\right )\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}} \,d x \] Input:

int((d + e*x)^(3/2)/((f + g*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/ 
2)),x)
 

Output:

int((d + e*x)^(3/2)/((f + g*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/ 
2)), x)
 

Reduce [B] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.10 \[ \int \frac {(d+e x)^{3/2}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {-2 \sqrt {g}\, \sqrt {-a e g +c d f}\, \mathit {atan} \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {g}\, \sqrt {-a e g +c d f}}\right ) c \,d^{2} g +2 \sqrt {g}\, \sqrt {-a e g +c d f}\, \mathit {atan} \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {g}\, \sqrt {-a e g +c d f}}\right ) c d e f +2 \sqrt {c d x +a e}\, a \,e^{2} g^{2}-2 \sqrt {c d x +a e}\, c d e f g}{c d \,g^{2} \left (a e g -c d f \right )} \] Input:

int((e*x+d)^(3/2)/(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x)
 

Output:

(2*( - sqrt(g)*sqrt( - a*e*g + c*d*f)*atan((sqrt(a*e + c*d*x)*g)/(sqrt(g)* 
sqrt( - a*e*g + c*d*f)))*c*d**2*g + sqrt(g)*sqrt( - a*e*g + c*d*f)*atan((s 
qrt(a*e + c*d*x)*g)/(sqrt(g)*sqrt( - a*e*g + c*d*f)))*c*d*e*f + sqrt(a*e + 
 c*d*x)*a*e**2*g**2 - sqrt(a*e + c*d*x)*c*d*e*f*g))/(c*d*g**2*(a*e*g - c*d 
*f))