\(\int \frac {(f+g x) (c d^2-b d e-b e^2 x-c e^2 x^2)^{3/2}}{(d+e x)^{3/2}} \, dx\) [208]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 46, antiderivative size = 116 \[ \int \frac {(f+g x) \left (c d^2-b d e-b e^2 x-c e^2 x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=-\frac {2 (c e f+c d g-b e g) \left (d (c d-b e)-b e^2 x-c e^2 x^2\right )^{5/2}}{5 c^2 e^2 (d+e x)^{5/2}}+\frac {2 g \left (d (c d-b e)-b e^2 x-c e^2 x^2\right )^{7/2}}{7 c^2 e^2 (d+e x)^{7/2}} \] Output:

-2/5*(-b*e*g+c*d*g+c*e*f)*(d*(-b*e+c*d)-b*e^2*x-c*e^2*x^2)^(5/2)/c^2/e^2/( 
e*x+d)^(5/2)+2/7*g*(d*(-b*e+c*d)-b*e^2*x-c*e^2*x^2)^(7/2)/c^2/e^2/(e*x+d)^ 
(7/2)
 

Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.67 \[ \int \frac {(f+g x) \left (c d^2-b d e-b e^2 x-c e^2 x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=-\frac {2 (-c d+b e+c e x)^2 \sqrt {(d+e x) (-b e+c (d-e x))} (-2 b e g+c (7 e f+2 d g+5 e g x))}{35 c^2 e^2 \sqrt {d+e x}} \] Input:

Integrate[((f + g*x)*(c*d^2 - b*d*e - b*e^2*x - c*e^2*x^2)^(3/2))/(d + e*x 
)^(3/2),x]
 

Output:

(-2*(-(c*d) + b*e + c*e*x)^2*Sqrt[(d + e*x)*(-(b*e) + c*(d - e*x))]*(-2*b* 
e*g + c*(7*e*f + 2*d*g + 5*e*g*x)))/(35*c^2*e^2*Sqrt[d + e*x])
 

Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.02, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {1221, 1122}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(f+g x) \left (-b d e-b e^2 x+c d^2-c e^2 x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx\)

\(\Big \downarrow \) 1221

\(\displaystyle \frac {(-2 b e g-3 c d g+7 c e f) \int \frac {\left (-c x^2 e^2-b x e^2+d (c d-b e)\right )^{3/2}}{(d+e x)^{3/2}}dx}{7 c e}-\frac {2 g \left (d (c d-b e)-b e^2 x-c e^2 x^2\right )^{5/2}}{7 c e^2 (d+e x)^{3/2}}\)

\(\Big \downarrow \) 1122

\(\displaystyle -\frac {2 \left (d (c d-b e)-b e^2 x-c e^2 x^2\right )^{5/2} (-2 b e g-3 c d g+7 c e f)}{35 c^2 e^2 (d+e x)^{5/2}}-\frac {2 g \left (d (c d-b e)-b e^2 x-c e^2 x^2\right )^{5/2}}{7 c e^2 (d+e x)^{3/2}}\)

Input:

Int[((f + g*x)*(c*d^2 - b*d*e - b*e^2*x - c*e^2*x^2)^(3/2))/(d + e*x)^(3/2 
),x]
 

Output:

(-2*(7*c*e*f - 3*c*d*g - 2*b*e*g)*(d*(c*d - b*e) - b*e^2*x - c*e^2*x^2)^(5 
/2))/(35*c^2*e^2*(d + e*x)^(5/2)) - (2*g*(d*(c*d - b*e) - b*e^2*x - c*e^2* 
x^2)^(5/2))/(7*c*e^2*(d + e*x)^(3/2))
 

Defintions of rubi rules used

rule 1122
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[e*(d + e*x)^(m - 1)*((a + b*x + c*x^2)^(p + 1)/(c*(p + 1))), 
 x] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && 
EqQ[m + p, 0]
 

rule 1221
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_), x_Symbol] :> Simp[g*(d + e*x)^m*((a + b*x + c*x^2)^(p + 1 
)/(c*(m + 2*p + 2))), x] + Simp[(m*(g*(c*d - b*e) + c*e*f) + e*(p + 1)*(2*c 
*f - b*g))/(c*e*(m + 2*p + 2))   Int[(d + e*x)^m*(a + b*x + c*x^2)^p, x], x 
] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] 
 && NeQ[m + 2*p + 2, 0]
 
Maple [A] (verified)

Time = 2.12 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.63

method result size
default \(\frac {2 \sqrt {-\left (e x +d \right ) \left (c e x +b e -c d \right )}\, \left (c e x +b e -c d \right )^{2} \left (-5 c e g x +2 b e g -2 c d g -7 f c e \right )}{35 \sqrt {e x +d}\, c^{2} e^{2}}\) \(73\)
gosper \(-\frac {2 \left (c e x +b e -c d \right ) \left (-5 c e g x +2 b e g -2 c d g -7 f c e \right ) \left (-x^{2} c \,e^{2}-x b \,e^{2}-b d e +c \,d^{2}\right )^{\frac {3}{2}}}{35 c^{2} e^{2} \left (e x +d \right )^{\frac {3}{2}}}\) \(79\)
orering \(-\frac {2 \left (c e x +b e -c d \right ) \left (-5 c e g x +2 b e g -2 c d g -7 f c e \right ) \left (-x^{2} c \,e^{2}-x b \,e^{2}-b d e +c \,d^{2}\right )^{\frac {3}{2}}}{35 c^{2} e^{2} \left (e x +d \right )^{\frac {3}{2}}}\) \(79\)

Input:

int((g*x+f)*(-c*e^2*x^2-b*e^2*x-b*d*e+c*d^2)^(3/2)/(e*x+d)^(3/2),x,method= 
_RETURNVERBOSE)
 

Output:

2/35*(-(e*x+d)*(c*e*x+b*e-c*d))^(1/2)/(e*x+d)^(1/2)*(c*e*x+b*e-c*d)^2*(-5* 
c*e*g*x+2*b*e*g-2*c*d*g-7*c*e*f)/c^2/e^2
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 229 vs. \(2 (104) = 208\).

Time = 0.09 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.97 \[ \int \frac {(f+g x) \left (c d^2-b d e-b e^2 x-c e^2 x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=-\frac {2 \, {\left (5 \, c^{3} e^{3} g x^{3} + {\left (7 \, c^{3} e^{3} f - 8 \, {\left (c^{3} d e^{2} - b c^{2} e^{3}\right )} g\right )} x^{2} + 7 \, {\left (c^{3} d^{2} e - 2 \, b c^{2} d e^{2} + b^{2} c e^{3}\right )} f + 2 \, {\left (c^{3} d^{3} - 3 \, b c^{2} d^{2} e + 3 \, b^{2} c d e^{2} - b^{3} e^{3}\right )} g - {\left (14 \, {\left (c^{3} d e^{2} - b c^{2} e^{3}\right )} f - {\left (c^{3} d^{2} e - 2 \, b c^{2} d e^{2} + b^{2} c e^{3}\right )} g\right )} x\right )} \sqrt {-c e^{2} x^{2} - b e^{2} x + c d^{2} - b d e} \sqrt {e x + d}}{35 \, {\left (c^{2} e^{3} x + c^{2} d e^{2}\right )}} \] Input:

integrate((g*x+f)*(-c*e^2*x^2-b*e^2*x-b*d*e+c*d^2)^(3/2)/(e*x+d)^(3/2),x, 
algorithm="fricas")
 

Output:

-2/35*(5*c^3*e^3*g*x^3 + (7*c^3*e^3*f - 8*(c^3*d*e^2 - b*c^2*e^3)*g)*x^2 + 
 7*(c^3*d^2*e - 2*b*c^2*d*e^2 + b^2*c*e^3)*f + 2*(c^3*d^3 - 3*b*c^2*d^2*e 
+ 3*b^2*c*d*e^2 - b^3*e^3)*g - (14*(c^3*d*e^2 - b*c^2*e^3)*f - (c^3*d^2*e 
- 2*b*c^2*d*e^2 + b^2*c*e^3)*g)*x)*sqrt(-c*e^2*x^2 - b*e^2*x + c*d^2 - b*d 
*e)*sqrt(e*x + d)/(c^2*e^3*x + c^2*d*e^2)
 

Sympy [F]

\[ \int \frac {(f+g x) \left (c d^2-b d e-b e^2 x-c e^2 x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=\int \frac {\left (- \left (d + e x\right ) \left (b e - c d + c e x\right )\right )^{\frac {3}{2}} \left (f + g x\right )}{\left (d + e x\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((g*x+f)*(-c*e**2*x**2-b*e**2*x-b*d*e+c*d**2)**(3/2)/(e*x+d)**(3/ 
2),x)
                                                                                    
                                                                                    
 

Output:

Integral((-(d + e*x)*(b*e - c*d + c*e*x))**(3/2)*(f + g*x)/(d + e*x)**(3/2 
), x)
 

Maxima [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 197, normalized size of antiderivative = 1.70 \[ \int \frac {(f+g x) \left (c d^2-b d e-b e^2 x-c e^2 x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=-\frac {2 \, {\left (c^{2} e^{2} x^{2} + c^{2} d^{2} - 2 \, b c d e + b^{2} e^{2} - 2 \, {\left (c^{2} d e - b c e^{2}\right )} x\right )} \sqrt {-c e x + c d - b e} f}{5 \, c e} - \frac {2 \, {\left (5 \, c^{3} e^{3} x^{3} + 2 \, c^{3} d^{3} - 6 \, b c^{2} d^{2} e + 6 \, b^{2} c d e^{2} - 2 \, b^{3} e^{3} - 8 \, {\left (c^{3} d e^{2} - b c^{2} e^{3}\right )} x^{2} + {\left (c^{3} d^{2} e - 2 \, b c^{2} d e^{2} + b^{2} c e^{3}\right )} x\right )} \sqrt {-c e x + c d - b e} g}{35 \, c^{2} e^{2}} \] Input:

integrate((g*x+f)*(-c*e^2*x^2-b*e^2*x-b*d*e+c*d^2)^(3/2)/(e*x+d)^(3/2),x, 
algorithm="maxima")
 

Output:

-2/5*(c^2*e^2*x^2 + c^2*d^2 - 2*b*c*d*e + b^2*e^2 - 2*(c^2*d*e - b*c*e^2)* 
x)*sqrt(-c*e*x + c*d - b*e)*f/(c*e) - 2/35*(5*c^3*e^3*x^3 + 2*c^3*d^3 - 6* 
b*c^2*d^2*e + 6*b^2*c*d*e^2 - 2*b^3*e^3 - 8*(c^3*d*e^2 - b*c^2*e^3)*x^2 + 
(c^3*d^2*e - 2*b*c^2*d*e^2 + b^2*c*e^3)*x)*sqrt(-c*e*x + c*d - b*e)*g/(c^2 
*e^2)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 540 vs. \(2 (104) = 208\).

Time = 0.35 (sec) , antiderivative size = 540, normalized size of antiderivative = 4.66 \[ \int \frac {(f+g x) \left (c d^2-b d e-b e^2 x-c e^2 x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=-\frac {2 \, {\left (35 \, {\left (-{\left (e x + d\right )} c + 2 \, c d - b e\right )}^{\frac {3}{2}} d e f - \frac {35 \, {\left (-{\left (e x + d\right )} c + 2 \, c d - b e\right )}^{\frac {3}{2}} b e^{2} f}{c} - \frac {7 \, {\left (5 \, {\left (-{\left (e x + d\right )} c + 2 \, c d - b e\right )}^{\frac {3}{2}} c d - 5 \, {\left (-{\left (e x + d\right )} c + 2 \, c d - b e\right )}^{\frac {3}{2}} b e - 3 \, {\left ({\left (e x + d\right )} c - 2 \, c d + b e\right )}^{2} \sqrt {-{\left (e x + d\right )} c + 2 \, c d - b e}\right )} e f}{c} + \frac {7 \, {\left (5 \, {\left (-{\left (e x + d\right )} c + 2 \, c d - b e\right )}^{\frac {3}{2}} c d - 5 \, {\left (-{\left (e x + d\right )} c + 2 \, c d - b e\right )}^{\frac {3}{2}} b e - 3 \, {\left ({\left (e x + d\right )} c - 2 \, c d + b e\right )}^{2} \sqrt {-{\left (e x + d\right )} c + 2 \, c d - b e}\right )} d g}{c} - \frac {7 \, {\left (5 \, {\left (-{\left (e x + d\right )} c + 2 \, c d - b e\right )}^{\frac {3}{2}} c d - 5 \, {\left (-{\left (e x + d\right )} c + 2 \, c d - b e\right )}^{\frac {3}{2}} b e - 3 \, {\left ({\left (e x + d\right )} c - 2 \, c d + b e\right )}^{2} \sqrt {-{\left (e x + d\right )} c + 2 \, c d - b e}\right )} b e g}{c^{2}} - \frac {{\left (35 \, {\left (-{\left (e x + d\right )} c + 2 \, c d - b e\right )}^{\frac {3}{2}} c^{2} d^{2} - 70 \, {\left (-{\left (e x + d\right )} c + 2 \, c d - b e\right )}^{\frac {3}{2}} b c d e + 35 \, {\left (-{\left (e x + d\right )} c + 2 \, c d - b e\right )}^{\frac {3}{2}} b^{2} e^{2} - 42 \, {\left ({\left (e x + d\right )} c - 2 \, c d + b e\right )}^{2} \sqrt {-{\left (e x + d\right )} c + 2 \, c d - b e} c d + 42 \, {\left ({\left (e x + d\right )} c - 2 \, c d + b e\right )}^{2} \sqrt {-{\left (e x + d\right )} c + 2 \, c d - b e} b e - 15 \, {\left ({\left (e x + d\right )} c - 2 \, c d + b e\right )}^{3} \sqrt {-{\left (e x + d\right )} c + 2 \, c d - b e}\right )} g}{c^{2}}\right )}}{105 \, e^{2}} \] Input:

integrate((g*x+f)*(-c*e^2*x^2-b*e^2*x-b*d*e+c*d^2)^(3/2)/(e*x+d)^(3/2),x, 
algorithm="giac")
 

Output:

-2/105*(35*(-(e*x + d)*c + 2*c*d - b*e)^(3/2)*d*e*f - 35*(-(e*x + d)*c + 2 
*c*d - b*e)^(3/2)*b*e^2*f/c - 7*(5*(-(e*x + d)*c + 2*c*d - b*e)^(3/2)*c*d 
- 5*(-(e*x + d)*c + 2*c*d - b*e)^(3/2)*b*e - 3*((e*x + d)*c - 2*c*d + b*e) 
^2*sqrt(-(e*x + d)*c + 2*c*d - b*e))*e*f/c + 7*(5*(-(e*x + d)*c + 2*c*d - 
b*e)^(3/2)*c*d - 5*(-(e*x + d)*c + 2*c*d - b*e)^(3/2)*b*e - 3*((e*x + d)*c 
 - 2*c*d + b*e)^2*sqrt(-(e*x + d)*c + 2*c*d - b*e))*d*g/c - 7*(5*(-(e*x + 
d)*c + 2*c*d - b*e)^(3/2)*c*d - 5*(-(e*x + d)*c + 2*c*d - b*e)^(3/2)*b*e - 
 3*((e*x + d)*c - 2*c*d + b*e)^2*sqrt(-(e*x + d)*c + 2*c*d - b*e))*b*e*g/c 
^2 - (35*(-(e*x + d)*c + 2*c*d - b*e)^(3/2)*c^2*d^2 - 70*(-(e*x + d)*c + 2 
*c*d - b*e)^(3/2)*b*c*d*e + 35*(-(e*x + d)*c + 2*c*d - b*e)^(3/2)*b^2*e^2 
- 42*((e*x + d)*c - 2*c*d + b*e)^2*sqrt(-(e*x + d)*c + 2*c*d - b*e)*c*d + 
42*((e*x + d)*c - 2*c*d + b*e)^2*sqrt(-(e*x + d)*c + 2*c*d - b*e)*b*e - 15 
*((e*x + d)*c - 2*c*d + b*e)^3*sqrt(-(e*x + d)*c + 2*c*d - b*e))*g/c^2)/e^ 
2
 

Mupad [B] (verification not implemented)

Time = 11.45 (sec) , antiderivative size = 133, normalized size of antiderivative = 1.15 \[ \int \frac {(f+g x) \left (c d^2-b d e-b e^2 x-c e^2 x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=-\frac {\left (x^2\,\left (\frac {16\,b\,e\,g}{35}-\frac {16\,c\,d\,g}{35}+\frac {2\,c\,e\,f}{5}\right )+\frac {2\,c\,e\,g\,x^3}{7}+\frac {2\,{\left (b\,e-c\,d\right )}^2\,\left (2\,c\,d\,g-2\,b\,e\,g+7\,c\,e\,f\right )}{35\,c^2\,e^2}+\frac {2\,x\,\left (b\,e-c\,d\right )\,\left (b\,e\,g-c\,d\,g+14\,c\,e\,f\right )}{35\,c\,e}\right )\,\sqrt {c\,d^2-b\,d\,e-c\,e^2\,x^2-b\,e^2\,x}}{\sqrt {d+e\,x}} \] Input:

int(((f + g*x)*(c*d^2 - c*e^2*x^2 - b*d*e - b*e^2*x)^(3/2))/(d + e*x)^(3/2 
),x)
 

Output:

-((x^2*((16*b*e*g)/35 - (16*c*d*g)/35 + (2*c*e*f)/5) + (2*c*e*g*x^3)/7 + ( 
2*(b*e - c*d)^2*(2*c*d*g - 2*b*e*g + 7*c*e*f))/(35*c^2*e^2) + (2*x*(b*e - 
c*d)*(b*e*g - c*d*g + 14*c*e*f))/(35*c*e))*(c*d^2 - c*e^2*x^2 - b*d*e - b* 
e^2*x)^(1/2))/(d + e*x)^(1/2)
 

Reduce [B] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 200, normalized size of antiderivative = 1.72 \[ \int \frac {(f+g x) \left (c d^2-b d e-b e^2 x-c e^2 x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=\frac {2 \sqrt {-c e x -b e +c d}\, \left (-5 c^{3} e^{3} g \,x^{3}-8 b \,c^{2} e^{3} g \,x^{2}+8 c^{3} d \,e^{2} g \,x^{2}-7 c^{3} e^{3} f \,x^{2}-b^{2} c \,e^{3} g x +2 b \,c^{2} d \,e^{2} g x -14 b \,c^{2} e^{3} f x -c^{3} d^{2} e g x +14 c^{3} d \,e^{2} f x +2 b^{3} e^{3} g -6 b^{2} c d \,e^{2} g -7 b^{2} c \,e^{3} f +6 b \,c^{2} d^{2} e g +14 b \,c^{2} d \,e^{2} f -2 c^{3} d^{3} g -7 c^{3} d^{2} e f \right )}{35 c^{2} e^{2}} \] Input:

int((g*x+f)*(-c*e^2*x^2-b*e^2*x-b*d*e+c*d^2)^(3/2)/(e*x+d)^(3/2),x)
 

Output:

(2*sqrt( - b*e + c*d - c*e*x)*(2*b**3*e**3*g - 6*b**2*c*d*e**2*g - 7*b**2* 
c*e**3*f - b**2*c*e**3*g*x + 6*b*c**2*d**2*e*g + 14*b*c**2*d*e**2*f + 2*b* 
c**2*d*e**2*g*x - 14*b*c**2*e**3*f*x - 8*b*c**2*e**3*g*x**2 - 2*c**3*d**3* 
g - 7*c**3*d**2*e*f - c**3*d**2*e*g*x + 14*c**3*d*e**2*f*x + 8*c**3*d*e**2 
*g*x**2 - 7*c**3*e**3*f*x**2 - 5*c**3*e**3*g*x**3))/(35*c**2*e**2)