\(\int \frac {\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}}{\sqrt {d+e x} (f+g x)} \, dx\) [6]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 46, antiderivative size = 124 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)} \, dx=\frac {2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g \sqrt {d+e x}}-\frac {2 \sqrt {c d f-a e g} \arctan \left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{g^{3/2}} \] Output:

2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/g/(e*x+d)^(1/2)-2*(-a*e*g+c*d*f) 
^(1/2)*arctan(g^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e*g+c*d* 
f)^(1/2)/(e*x+d)^(1/2))/g^(3/2)
 

Mathematica [A] (verified)

Time = 0.18 (sec) , antiderivative size = 114, normalized size of antiderivative = 0.92 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)} \, dx=\frac {2 \sqrt {a e+c d x} \sqrt {d+e x} \left (\sqrt {g} \sqrt {a e+c d x}-\sqrt {c d f-a e g} \arctan \left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c d f-a e g}}\right )\right )}{g^{3/2} \sqrt {(a e+c d x) (d+e x)}} \] Input:

Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(Sqrt[d + e*x]*(f + 
g*x)),x]
 

Output:

(2*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*(Sqrt[g]*Sqrt[a*e + c*d*x] - Sqrt[c*d*f 
 - a*e*g]*ArcTan[(Sqrt[g]*Sqrt[a*e + c*d*x])/Sqrt[c*d*f - a*e*g]]))/(g^(3/ 
2)*Sqrt[(a*e + c*d*x)*(d + e*x)])
 

Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {1250, 1255, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} (f+g x)} \, dx\)

\(\Big \downarrow \) 1250

\(\displaystyle \frac {2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{g \sqrt {d+e x}}-\frac {(c d f-a e g) \int \frac {\sqrt {d+e x}}{(f+g x) \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{g}\)

\(\Big \downarrow \) 1255

\(\displaystyle \frac {2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{g \sqrt {d+e x}}-\frac {2 e^2 (c d f-a e g) \int \frac {1}{(c d f-a e g) e^2+\frac {g \left (c d e x^2+\left (c d^2+a e^2\right ) x+a d e\right ) e^2}{d+e x}}d\frac {\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}{\sqrt {d+e x}}}{g}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{g \sqrt {d+e x}}-\frac {2 \sqrt {c d f-a e g} \arctan \left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{g^{3/2}}\)

Input:

Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(Sqrt[d + e*x]*(f + g*x)), 
x]
 

Output:

(2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(g*Sqrt[d + e*x]) - (2*Sqr 
t[c*d*f - a*e*g]*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^ 
2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/g^(3/2)
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1250
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
+ (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(d + e*x)^m)*(f + g*x)^(n + 1)*(( 
a + b*x + c*x^2)^p/(g*(m - n - 1))), x] - Simp[m*((c*e*f + c*d*g - b*e*g)/( 
e^2*g*(m - n - 1)))   Int[(d + e*x)^(m + 1)*(f + g*x)^n*(a + b*x + c*x^2)^( 
p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[c*d^2 - b*d*e + 
 a*e^2, 0] && EqQ[m + p, 0] && GtQ[p, 0] && NeQ[m - n - 1, 0] &&  !IGtQ[n, 
0] &&  !(IntegerQ[n + p] && LtQ[n + p + 2, 0]) && RationalQ[n]
 

rule 1255
Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + 
 (c_.)*(x_)^2]), x_Symbol] :> Simp[2*e^2   Subst[Int[1/(c*(e*f + d*g) - b*e 
*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{ 
a, b, c, d, e, f, g}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0]
 
Maple [A] (verified)

Time = 2.83 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.15

method result size
default \(-\frac {2 \sqrt {\left (e x +d \right ) \left (c d x +a e \right )}\, \left (\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -d f c \right ) g}}\right ) a e g -\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -d f c \right ) g}}\right ) c d f -\sqrt {c d x +a e}\, \sqrt {\left (a e g -d f c \right ) g}\right )}{\sqrt {e x +d}\, \sqrt {c d x +a e}\, g \sqrt {\left (a e g -d f c \right ) g}}\) \(143\)

Input:

int((a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)/(e*x+d)^(1/2)/(g*x+f),x,method 
=_RETURNVERBOSE)
 

Output:

-2*((e*x+d)*(c*d*x+a*e))^(1/2)*(arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f) 
*g)^(1/2))*a*e*g-arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*c*d* 
f-(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2))/(e*x+d)^(1/2)/(c*d*x+a*e)^(1/ 
2)/g/((a*e*g-c*d*f)*g)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 350, normalized size of antiderivative = 2.82 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)} \, dx=\left [\frac {{\left (e x + d\right )} \sqrt {-\frac {c d f - a e g}{g}} \log \left (-\frac {c d e g x^{2} - c d^{2} f + 2 \, a d e g - 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d} g \sqrt {-\frac {c d f - a e g}{g}} - {\left (c d e f - {\left (c d^{2} + 2 \, a e^{2}\right )} g\right )} x}{e g x^{2} + d f + {\left (e f + d g\right )} x}\right ) + 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{e g x + d g}, \frac {2 \, {\left ({\left (e x + d\right )} \sqrt {\frac {c d f - a e g}{g}} \arctan \left (-\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d} g \sqrt {\frac {c d f - a e g}{g}}}{c d^{2} f - a d e g + {\left (c d e f - a e^{2} g\right )} x}\right ) + \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}\right )}}{e g x + d g}\right ] \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(1/2)/(g*x+f),x, 
 algorithm="fricas")
 

Output:

[((e*x + d)*sqrt(-(c*d*f - a*e*g)/g)*log(-(c*d*e*g*x^2 - c*d^2*f + 2*a*d*e 
*g - 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)*g*sqrt(-( 
c*d*f - a*e*g)/g) - (c*d*e*f - (c*d^2 + 2*a*e^2)*g)*x)/(e*g*x^2 + d*f + (e 
*f + d*g)*x)) + 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d 
))/(e*g*x + d*g), 2*((e*x + d)*sqrt((c*d*f - a*e*g)/g)*arctan(-sqrt(c*d*e* 
x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)*g*sqrt((c*d*f - a*e*g)/g)/( 
c*d^2*f - a*d*e*g + (c*d*e*f - a*e^2*g)*x)) + sqrt(c*d*e*x^2 + a*d*e + (c* 
d^2 + a*e^2)*x)*sqrt(e*x + d))/(e*g*x + d*g)]
 

Sympy [F]

\[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)} \, dx=\int \frac {\sqrt {\left (d + e x\right ) \left (a e + c d x\right )}}{\sqrt {d + e x} \left (f + g x\right )}\, dx \] Input:

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/(e*x+d)**(1/2)/(g*x+ 
f),x)
 

Output:

Integral(sqrt((d + e*x)*(a*e + c*d*x))/(sqrt(d + e*x)*(f + g*x)), x)
 

Maxima [F]

\[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)} \, dx=\int { \frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{\sqrt {e x + d} {\left (g x + f\right )}} \,d x } \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(1/2)/(g*x+f),x, 
 algorithm="maxima")
 

Output:

integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/(sqrt(e*x + d)*(g*x 
+ f)), x)
 

Giac [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 119, normalized size of antiderivative = 0.96 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)} \, dx=\frac {2 \, {\left (\frac {\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}}}{g} - \frac {{\left (c d e^{2} f - a e^{3} g\right )} \arctan \left (\frac {\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} g}{\sqrt {c d f g - a e g^{2}} e}\right )}{\sqrt {c d f g - a e g^{2}} e g}\right )} {\left | e \right |}}{e^{2}} \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(1/2)/(g*x+f),x, 
 algorithm="giac")
 

Output:

2*(sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)/g - (c*d*e^2*f - a*e^3*g)*arcta 
n(sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e))/( 
sqrt(c*d*f*g - a*e*g^2)*e*g))*abs(e)/e^2
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)} \, dx=\int \frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{\left (f+g\,x\right )\,\sqrt {d+e\,x}} \,d x \] Input:

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/((f + g*x)*(d + e*x)^(1/ 
2)),x)
 

Output:

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/((f + g*x)*(d + e*x)^(1/ 
2)), x)
 

Reduce [B] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.49 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)} \, dx=\frac {-2 \sqrt {g}\, \sqrt {-a e g +c d f}\, \mathit {atan} \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {g}\, \sqrt {-a e g +c d f}}\right )+2 \sqrt {c d x +a e}\, g}{g^{2}} \] Input:

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(1/2)/(g*x+f),x)
 

Output:

(2*( - sqrt(g)*sqrt( - a*e*g + c*d*f)*atan((sqrt(a*e + c*d*x)*g)/(sqrt(g)* 
sqrt( - a*e*g + c*d*f))) + sqrt(a*e + c*d*x)*g))/g**2