\(\int \frac {\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}}{\sqrt {d+e x} (f+g x)^4} \, dx\) [9]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 46, antiderivative size = 277 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)^4} \, dx=-\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 g \sqrt {d+e x} (f+g x)^3}+\frac {c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{12 g (c d f-a e g) \sqrt {d+e x} (f+g x)^2}+\frac {c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 g (c d f-a e g)^2 \sqrt {d+e x} (f+g x)}+\frac {c^3 d^3 \arctan \left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{8 g^{3/2} (c d f-a e g)^{5/2}} \] Output:

-1/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/g/(e*x+d)^(1/2)/(g*x+f)^3+1/1 
2*c*d*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/g/(-a*e*g+c*d*f)/(e*x+d)^(1/ 
2)/(g*x+f)^2+1/8*c^2*d^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/g/(-a*e*g 
+c*d*f)^2/(e*x+d)^(1/2)/(g*x+f)+1/8*c^3*d^3*arctan(g^(1/2)*(a*d*e+(a*e^2+c 
*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e*g+c*d*f)^(1/2)/(e*x+d)^(1/2))/g^(3/2)/(-a*e 
*g+c*d*f)^(5/2)
 

Mathematica [A] (verified)

Time = 1.25 (sec) , antiderivative size = 202, normalized size of antiderivative = 0.73 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)^4} \, dx=\frac {\sqrt {a e+c d x} \sqrt {d+e x} \left (\sqrt {g} \sqrt {c d f-a e g} \sqrt {a e+c d x} \left (-8 a^2 e^2 g^2-2 a c d e g (-7 f+g x)+c^2 d^2 \left (-3 f^2+8 f g x+3 g^2 x^2\right )\right )+3 c^3 d^3 (f+g x)^3 \arctan \left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c d f-a e g}}\right )\right )}{24 g^{3/2} (c d f-a e g)^{5/2} \sqrt {(a e+c d x) (d+e x)} (f+g x)^3} \] Input:

Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(Sqrt[d + e*x]*(f + 
g*x)^4),x]
 

Output:

(Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*(Sqrt[g]*Sqrt[c*d*f - a*e*g]*Sqrt[a*e + c 
*d*x]*(-8*a^2*e^2*g^2 - 2*a*c*d*e*g*(-7*f + g*x) + c^2*d^2*(-3*f^2 + 8*f*g 
*x + 3*g^2*x^2)) + 3*c^3*d^3*(f + g*x)^3*ArcTan[(Sqrt[g]*Sqrt[a*e + c*d*x] 
)/Sqrt[c*d*f - a*e*g]]))/(24*g^(3/2)*(c*d*f - a*e*g)^(5/2)*Sqrt[(a*e + c*d 
*x)*(d + e*x)]*(f + g*x)^3)
 

Rubi [A] (verified)

Time = 1.05 (sec) , antiderivative size = 282, normalized size of antiderivative = 1.02, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.109, Rules used = {1249, 1254, 1254, 1255, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} (f+g x)^4} \, dx\)

\(\Big \downarrow \) 1249

\(\displaystyle \frac {c d \int \frac {\sqrt {d+e x}}{(f+g x)^3 \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{6 g}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 g \sqrt {d+e x} (f+g x)^3}\)

\(\Big \downarrow \) 1254

\(\displaystyle \frac {c d \left (\frac {3 c d \int \frac {\sqrt {d+e x}}{(f+g x)^2 \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{4 (c d f-a e g)}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 \sqrt {d+e x} (f+g x)^2 (c d f-a e g)}\right )}{6 g}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 g \sqrt {d+e x} (f+g x)^3}\)

\(\Big \downarrow \) 1254

\(\displaystyle \frac {c d \left (\frac {3 c d \left (\frac {c d \int \frac {\sqrt {d+e x}}{(f+g x) \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{2 (c d f-a e g)}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} (f+g x) (c d f-a e g)}\right )}{4 (c d f-a e g)}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 \sqrt {d+e x} (f+g x)^2 (c d f-a e g)}\right )}{6 g}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 g \sqrt {d+e x} (f+g x)^3}\)

\(\Big \downarrow \) 1255

\(\displaystyle \frac {c d \left (\frac {3 c d \left (\frac {c d e^2 \int \frac {1}{(c d f-a e g) e^2+\frac {g \left (c d e x^2+\left (c d^2+a e^2\right ) x+a d e\right ) e^2}{d+e x}}d\frac {\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}{\sqrt {d+e x}}}{c d f-a e g}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} (f+g x) (c d f-a e g)}\right )}{4 (c d f-a e g)}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 \sqrt {d+e x} (f+g x)^2 (c d f-a e g)}\right )}{6 g}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 g \sqrt {d+e x} (f+g x)^3}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {c d \left (\frac {3 c d \left (\frac {c d \arctan \left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{\sqrt {g} (c d f-a e g)^{3/2}}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} (f+g x) (c d f-a e g)}\right )}{4 (c d f-a e g)}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 \sqrt {d+e x} (f+g x)^2 (c d f-a e g)}\right )}{6 g}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 g \sqrt {d+e x} (f+g x)^3}\)

Input:

Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(Sqrt[d + e*x]*(f + g*x)^4 
),x]
 

Output:

-1/3*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(g*Sqrt[d + e*x]*(f + g*x 
)^3) + (c*d*(Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(2*(c*d*f - a*e*g 
)*Sqrt[d + e*x]*(f + g*x)^2) + (3*c*d*(Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c* 
d*e*x^2]/((c*d*f - a*e*g)*Sqrt[d + e*x]*(f + g*x)) + (c*d*ArcTan[(Sqrt[g]* 
Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + 
 e*x])])/(Sqrt[g]*(c*d*f - a*e*g)^(3/2))))/(4*(c*d*f - a*e*g))))/(6*g)
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1249
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
+ (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^m*(f + g*x)^(n + 1)*((a + 
 b*x + c*x^2)^p/(g*(n + 1))), x] + Simp[c*(m/(e*g*(n + 1)))   Int[(d + e*x) 
^(m + 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b 
, c, d, e, f, g}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p, 0] && G 
tQ[p, 0] && LtQ[n, -1] &&  !(IntegerQ[n + p] && LeQ[n + p + 2, 0])
 

rule 1254
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
+ (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-e^2)*(d + e*x)^(m - 1)*(f + g*x)^ 
(n + 1)*((a + b*x + c*x^2)^(p + 1)/((n + 1)*(c*e*f + c*d*g - b*e*g))), x] - 
 Simp[c*e*((m - n - 2)/((n + 1)*(c*e*f + c*d*g - b*e*g)))   Int[(d + e*x)^m 
*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, 
g, m, p}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p, 0] && LtQ[n, -1 
] && IntegerQ[2*p]
 

rule 1255
Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + 
 (c_.)*(x_)^2]), x_Symbol] :> Simp[2*e^2   Subst[Int[1/(c*(e*f + d*g) - b*e 
*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{ 
a, b, c, d, e, f, g}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0]
 
Maple [A] (verified)

Time = 2.95 (sec) , antiderivative size = 443, normalized size of antiderivative = 1.60

method result size
default \(-\frac {\sqrt {\left (e x +d \right ) \left (c d x +a e \right )}\, \left (3 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -d f c \right ) g}}\right ) c^{3} d^{3} g^{3} x^{3}+9 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -d f c \right ) g}}\right ) c^{3} d^{3} f \,g^{2} x^{2}+9 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -d f c \right ) g}}\right ) c^{3} d^{3} f^{2} g x +3 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -d f c \right ) g}}\right ) c^{3} d^{3} f^{3}-3 c^{2} d^{2} g^{2} x^{2} \sqrt {c d x +a e}\, \sqrt {\left (a e g -d f c \right ) g}+2 a c d e \,g^{2} x \sqrt {c d x +a e}\, \sqrt {\left (a e g -d f c \right ) g}-8 c^{2} d^{2} f g x \sqrt {c d x +a e}\, \sqrt {\left (a e g -d f c \right ) g}+8 \sqrt {\left (a e g -d f c \right ) g}\, \sqrt {c d x +a e}\, a^{2} e^{2} g^{2}-14 \sqrt {\left (a e g -d f c \right ) g}\, \sqrt {c d x +a e}\, a c d e f g +3 \sqrt {\left (a e g -d f c \right ) g}\, \sqrt {c d x +a e}\, c^{2} d^{2} f^{2}\right )}{24 \sqrt {e x +d}\, \sqrt {\left (a e g -d f c \right ) g}\, \left (g x +f \right )^{3} g \left (a e g -d f c \right )^{2} \sqrt {c d x +a e}}\) \(443\)

Input:

int((a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)/(e*x+d)^(1/2)/(g*x+f)^4,x,meth 
od=_RETURNVERBOSE)
 

Output:

-1/24*((e*x+d)*(c*d*x+a*e))^(1/2)*(3*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c 
*d*f)*g)^(1/2))*c^3*d^3*g^3*x^3+9*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d* 
f)*g)^(1/2))*c^3*d^3*f*g^2*x^2+9*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f 
)*g)^(1/2))*c^3*d^3*f^2*g*x+3*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g 
)^(1/2))*c^3*d^3*f^3-3*c^2*d^2*g^2*x^2*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g) 
^(1/2)+2*a*c*d*e*g^2*x*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)-8*c^2*d^2 
*f*g*x*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)+8*((a*e*g-c*d*f)*g)^(1/2) 
*(c*d*x+a*e)^(1/2)*a^2*e^2*g^2-14*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2 
)*a*c*d*e*f*g+3*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*c^2*d^2*f^2)/(e* 
x+d)^(1/2)/((a*e*g-c*d*f)*g)^(1/2)/(g*x+f)^3/g/(a*e*g-c*d*f)^2/(c*d*x+a*e) 
^(1/2)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 846 vs. \(2 (245) = 490\).

Time = 0.28 (sec) , antiderivative size = 1733, normalized size of antiderivative = 6.26 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)^4} \, dx=\text {Too large to display} \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(1/2)/(g*x+f)^4, 
x, algorithm="fricas")
 

Output:

[-1/48*(3*(c^3*d^3*e*g^3*x^4 + c^3*d^4*f^3 + (3*c^3*d^3*e*f*g^2 + c^3*d^4* 
g^3)*x^3 + 3*(c^3*d^3*e*f^2*g + c^3*d^4*f*g^2)*x^2 + (c^3*d^3*e*f^3 + 3*c^ 
3*d^4*f^2*g)*x)*sqrt(-c*d*f*g + a*e*g^2)*log(-(c*d*e*g*x^2 - c*d^2*f + 2*a 
*d*e*g - (c*d*e*f - (c*d^2 + 2*a*e^2)*g)*x - 2*sqrt(c*d*e*x^2 + a*d*e + (c 
*d^2 + a*e^2)*x)*sqrt(-c*d*f*g + a*e*g^2)*sqrt(e*x + d))/(e*g*x^2 + d*f + 
(e*f + d*g)*x)) + 2*(3*c^3*d^3*f^3*g - 17*a*c^2*d^2*e*f^2*g^2 + 22*a^2*c*d 
*e^2*f*g^3 - 8*a^3*e^3*g^4 - 3*(c^3*d^3*f*g^3 - a*c^2*d^2*e*g^4)*x^2 - 2*( 
4*c^3*d^3*f^2*g^2 - 5*a*c^2*d^2*e*f*g^3 + a^2*c*d*e^2*g^4)*x)*sqrt(c*d*e*x 
^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(c^3*d^4*f^6*g^2 - 3*a*c^2* 
d^3*e*f^5*g^3 + 3*a^2*c*d^2*e^2*f^4*g^4 - a^3*d*e^3*f^3*g^5 + (c^3*d^3*e*f 
^3*g^5 - 3*a*c^2*d^2*e^2*f^2*g^6 + 3*a^2*c*d*e^3*f*g^7 - a^3*e^4*g^8)*x^4 
+ (3*c^3*d^3*e*f^4*g^4 - a^3*d*e^3*g^8 + (c^3*d^4 - 9*a*c^2*d^2*e^2)*f^3*g 
^5 - 3*(a*c^2*d^3*e - 3*a^2*c*d*e^3)*f^2*g^6 + 3*(a^2*c*d^2*e^2 - a^3*e^4) 
*f*g^7)*x^3 + 3*(c^3*d^3*e*f^5*g^3 - a^3*d*e^3*f*g^7 + (c^3*d^4 - 3*a*c^2* 
d^2*e^2)*f^4*g^4 - 3*(a*c^2*d^3*e - a^2*c*d*e^3)*f^3*g^5 + (3*a^2*c*d^2*e^ 
2 - a^3*e^4)*f^2*g^6)*x^2 + (c^3*d^3*e*f^6*g^2 - 3*a^3*d*e^3*f^2*g^6 + 3*( 
c^3*d^4 - a*c^2*d^2*e^2)*f^5*g^3 - 3*(3*a*c^2*d^3*e - a^2*c*d*e^3)*f^4*g^4 
 + (9*a^2*c*d^2*e^2 - a^3*e^4)*f^3*g^5)*x), -1/24*(3*(c^3*d^3*e*g^3*x^4 + 
c^3*d^4*f^3 + (3*c^3*d^3*e*f*g^2 + c^3*d^4*g^3)*x^3 + 3*(c^3*d^3*e*f^2*g + 
 c^3*d^4*f*g^2)*x^2 + (c^3*d^3*e*f^3 + 3*c^3*d^4*f^2*g)*x)*sqrt(c*d*f*g...
 

Sympy [F]

\[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)^4} \, dx=\int \frac {\sqrt {\left (d + e x\right ) \left (a e + c d x\right )}}{\sqrt {d + e x} \left (f + g x\right )^{4}}\, dx \] Input:

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/(e*x+d)**(1/2)/(g*x+ 
f)**4,x)
 

Output:

Integral(sqrt((d + e*x)*(a*e + c*d*x))/(sqrt(d + e*x)*(f + g*x)**4), x)
 

Maxima [F]

\[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)^4} \, dx=\int { \frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{\sqrt {e x + d} {\left (g x + f\right )}^{4}} \,d x } \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(1/2)/(g*x+f)^4, 
x, algorithm="maxima")
 

Output:

integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/(sqrt(e*x + d)*(g*x 
+ f)^4), x)
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 420, normalized size of antiderivative = 1.52 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)^4} \, dx=\frac {{\left (\frac {3 \, c^{3} d^{3} e \arctan \left (\frac {\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} g}{\sqrt {c d f g - a e g^{2}} e}\right )}{{\left (c^{2} d^{2} f^{2} g - 2 \, a c d e f g^{2} + a^{2} e^{2} g^{3}\right )} \sqrt {c d f g - a e g^{2}}} - \frac {3 \, \sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} c^{5} d^{5} e^{6} f^{2} - 6 \, \sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} a c^{4} d^{4} e^{7} f g + 3 \, \sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} a^{2} c^{3} d^{3} e^{8} g^{2} - 8 \, {\left ({\left (e x + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {3}{2}} c^{4} d^{4} e^{4} f g + 8 \, {\left ({\left (e x + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {3}{2}} a c^{3} d^{3} e^{5} g^{2} - 3 \, {\left ({\left (e x + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {5}{2}} c^{3} d^{3} e^{2} g^{2}}{{\left (c^{2} d^{2} f^{2} g - 2 \, a c d e f g^{2} + a^{2} e^{2} g^{3}\right )} {\left (c d e^{2} f - a e^{3} g + {\left ({\left (e x + d\right )} c d e - c d^{2} e + a e^{3}\right )} g\right )}^{3}}\right )} {\left | e \right |}}{24 \, e^{2}} \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(1/2)/(g*x+f)^4, 
x, algorithm="giac")
 

Output:

1/24*(3*c^3*d^3*e*arctan(sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*g/(sqrt(c 
*d*f*g - a*e*g^2)*e))/((c^2*d^2*f^2*g - 2*a*c*d*e*f*g^2 + a^2*e^2*g^3)*sqr 
t(c*d*f*g - a*e*g^2)) - (3*sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*c^5*d^5 
*e^6*f^2 - 6*sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*a*c^4*d^4*e^7*f*g + 3 
*sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*a^2*c^3*d^3*e^8*g^2 - 8*((e*x + d 
)*c*d*e - c*d^2*e + a*e^3)^(3/2)*c^4*d^4*e^4*f*g + 8*((e*x + d)*c*d*e - c* 
d^2*e + a*e^3)^(3/2)*a*c^3*d^3*e^5*g^2 - 3*((e*x + d)*c*d*e - c*d^2*e + a* 
e^3)^(5/2)*c^3*d^3*e^2*g^2)/((c^2*d^2*f^2*g - 2*a*c*d*e*f*g^2 + a^2*e^2*g^ 
3)*(c*d*e^2*f - a*e^3*g + ((e*x + d)*c*d*e - c*d^2*e + a*e^3)*g)^3))*abs(e 
)/e^2
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)^4} \, dx=\int \frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{{\left (f+g\,x\right )}^4\,\sqrt {d+e\,x}} \,d x \] Input:

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/((f + g*x)^4*(d + e*x)^( 
1/2)),x)
 

Output:

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/((f + g*x)^4*(d + e*x)^( 
1/2)), x)
 

Reduce [B] (verification not implemented)

Time = 0.42 (sec) , antiderivative size = 691, normalized size of antiderivative = 2.49 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x} (f+g x)^4} \, dx=\frac {-3 \sqrt {g}\, \sqrt {-a e g +c d f}\, \mathit {atan} \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {g}\, \sqrt {-a e g +c d f}}\right ) c^{3} d^{3} f^{3}-9 \sqrt {g}\, \sqrt {-a e g +c d f}\, \mathit {atan} \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {g}\, \sqrt {-a e g +c d f}}\right ) c^{3} d^{3} f^{2} g x -9 \sqrt {g}\, \sqrt {-a e g +c d f}\, \mathit {atan} \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {g}\, \sqrt {-a e g +c d f}}\right ) c^{3} d^{3} f \,g^{2} x^{2}-3 \sqrt {g}\, \sqrt {-a e g +c d f}\, \mathit {atan} \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {g}\, \sqrt {-a e g +c d f}}\right ) c^{3} d^{3} g^{3} x^{3}-8 \sqrt {c d x +a e}\, a^{3} e^{3} g^{4}+22 \sqrt {c d x +a e}\, a^{2} c d \,e^{2} f \,g^{3}-2 \sqrt {c d x +a e}\, a^{2} c d \,e^{2} g^{4} x -17 \sqrt {c d x +a e}\, a \,c^{2} d^{2} e \,f^{2} g^{2}+10 \sqrt {c d x +a e}\, a \,c^{2} d^{2} e f \,g^{3} x +3 \sqrt {c d x +a e}\, a \,c^{2} d^{2} e \,g^{4} x^{2}+3 \sqrt {c d x +a e}\, c^{3} d^{3} f^{3} g -8 \sqrt {c d x +a e}\, c^{3} d^{3} f^{2} g^{2} x -3 \sqrt {c d x +a e}\, c^{3} d^{3} f \,g^{3} x^{2}}{24 g^{2} \left (a^{3} e^{3} g^{6} x^{3}-3 a^{2} c d \,e^{2} f \,g^{5} x^{3}+3 a \,c^{2} d^{2} e \,f^{2} g^{4} x^{3}-c^{3} d^{3} f^{3} g^{3} x^{3}+3 a^{3} e^{3} f \,g^{5} x^{2}-9 a^{2} c d \,e^{2} f^{2} g^{4} x^{2}+9 a \,c^{2} d^{2} e \,f^{3} g^{3} x^{2}-3 c^{3} d^{3} f^{4} g^{2} x^{2}+3 a^{3} e^{3} f^{2} g^{4} x -9 a^{2} c d \,e^{2} f^{3} g^{3} x +9 a \,c^{2} d^{2} e \,f^{4} g^{2} x -3 c^{3} d^{3} f^{5} g x +a^{3} e^{3} f^{3} g^{3}-3 a^{2} c d \,e^{2} f^{4} g^{2}+3 a \,c^{2} d^{2} e \,f^{5} g -c^{3} d^{3} f^{6}\right )} \] Input:

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(1/2)/(g*x+f)^4,x)
 

Output:

( - 3*sqrt(g)*sqrt( - a*e*g + c*d*f)*atan((sqrt(a*e + c*d*x)*g)/(sqrt(g)*s 
qrt( - a*e*g + c*d*f)))*c**3*d**3*f**3 - 9*sqrt(g)*sqrt( - a*e*g + c*d*f)* 
atan((sqrt(a*e + c*d*x)*g)/(sqrt(g)*sqrt( - a*e*g + c*d*f)))*c**3*d**3*f** 
2*g*x - 9*sqrt(g)*sqrt( - a*e*g + c*d*f)*atan((sqrt(a*e + c*d*x)*g)/(sqrt( 
g)*sqrt( - a*e*g + c*d*f)))*c**3*d**3*f*g**2*x**2 - 3*sqrt(g)*sqrt( - a*e* 
g + c*d*f)*atan((sqrt(a*e + c*d*x)*g)/(sqrt(g)*sqrt( - a*e*g + c*d*f)))*c* 
*3*d**3*g**3*x**3 - 8*sqrt(a*e + c*d*x)*a**3*e**3*g**4 + 22*sqrt(a*e + c*d 
*x)*a**2*c*d*e**2*f*g**3 - 2*sqrt(a*e + c*d*x)*a**2*c*d*e**2*g**4*x - 17*s 
qrt(a*e + c*d*x)*a*c**2*d**2*e*f**2*g**2 + 10*sqrt(a*e + c*d*x)*a*c**2*d** 
2*e*f*g**3*x + 3*sqrt(a*e + c*d*x)*a*c**2*d**2*e*g**4*x**2 + 3*sqrt(a*e + 
c*d*x)*c**3*d**3*f**3*g - 8*sqrt(a*e + c*d*x)*c**3*d**3*f**2*g**2*x - 3*sq 
rt(a*e + c*d*x)*c**3*d**3*f*g**3*x**2)/(24*g**2*(a**3*e**3*f**3*g**3 + 3*a 
**3*e**3*f**2*g**4*x + 3*a**3*e**3*f*g**5*x**2 + a**3*e**3*g**6*x**3 - 3*a 
**2*c*d*e**2*f**4*g**2 - 9*a**2*c*d*e**2*f**3*g**3*x - 9*a**2*c*d*e**2*f** 
2*g**4*x**2 - 3*a**2*c*d*e**2*f*g**5*x**3 + 3*a*c**2*d**2*e*f**5*g + 9*a*c 
**2*d**2*e*f**4*g**2*x + 9*a*c**2*d**2*e*f**3*g**3*x**2 + 3*a*c**2*d**2*e* 
f**2*g**4*x**3 - c**3*d**3*f**6 - 3*c**3*d**3*f**5*g*x - 3*c**3*d**3*f**4* 
g**2*x**2 - c**3*d**3*f**3*g**3*x**3))