\(\int \frac {(d+e x)^2 (f+g x)}{(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx\) [284]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 42, antiderivative size = 178 \[ \int \frac {(d+e x)^2 (f+g x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 (c d f-a e g) (d+e x)}{c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {g \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{c^2 d^2}-\frac {\left (3 a e^2 g-c d (2 e f+d g)\right ) \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} (d+e x)}{\sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{c^{5/2} d^{5/2} \sqrt {e}} \] Output:

-2*(-a*e*g+c*d*f)*(e*x+d)/c^2/d^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+ 
g*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c^2/d^2-(3*a*e^2*g-c*d*(d*g+2*e* 
f))*arctanh(c^(1/2)*d^(1/2)*(e*x+d)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x 
^2)^(1/2))/c^(5/2)/d^(5/2)/e^(1/2)
 

Mathematica [A] (verified)

Time = 0.38 (sec) , antiderivative size = 151, normalized size of antiderivative = 0.85 \[ \int \frac {(d+e x)^2 (f+g x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\frac {\sqrt {c} \sqrt {d} \sqrt {e} (d+e x) (3 a e g+c d (-2 f+g x))+\left (-3 a e^2 g+c d (2 e f+d g)\right ) \sqrt {a e+c d x} \sqrt {d+e x} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {e} \sqrt {a e+c d x}}\right )}{c^{5/2} d^{5/2} \sqrt {e} \sqrt {(a e+c d x) (d+e x)}} \] Input:

Integrate[((d + e*x)^2*(f + g*x))/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^ 
(3/2),x]
 

Output:

(Sqrt[c]*Sqrt[d]*Sqrt[e]*(d + e*x)*(3*a*e*g + c*d*(-2*f + g*x)) + (-3*a*e^ 
2*g + c*d*(2*e*f + d*g))*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*ArcTanh[(Sqrt[c]* 
Sqrt[d]*Sqrt[d + e*x])/(Sqrt[e]*Sqrt[a*e + c*d*x])])/(c^(5/2)*d^(5/2)*Sqrt 
[e]*Sqrt[(a*e + c*d*x)*(d + e*x)])
 

Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.12, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {1211, 25, 27, 1160, 1092, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(d+e x)^2 (f+g x)}{\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1211

\(\displaystyle \frac {\int -\frac {e \left (a g e^2-c d g x e-c d (e f+d g)\right )}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{c^2 d^2 e}-\frac {2 (d+e x) (c d f-a e g)}{c^2 d^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int \frac {e \left (a g e^2-c d g x e-c d (e f+d g)\right )}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{c^2 d^2 e}-\frac {2 (d+e x) (c d f-a e g)}{c^2 d^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {a g e^2-c d g x e-c d (e f+d g)}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{c^2 d^2}-\frac {2 (d+e x) (c d f-a e g)}{c^2 d^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

\(\Big \downarrow \) 1160

\(\displaystyle -\frac {\frac {1}{2} \left (3 a e^2 g-c d (d g+2 e f)\right ) \int \frac {1}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx-g \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c^2 d^2}-\frac {2 (d+e x) (c d f-a e g)}{c^2 d^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

\(\Big \downarrow \) 1092

\(\displaystyle -\frac {\left (3 a e^2 g-c d (d g+2 e f)\right ) \int \frac {1}{4 c d e-\frac {\left (c d^2+2 c e x d+a e^2\right )^2}{c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}d\frac {c d^2+2 c e x d+a e^2}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}-g \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c^2 d^2}-\frac {2 (d+e x) (c d f-a e g)}{c^2 d^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {\frac {\text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right ) \left (3 a e^2 g-c d (d g+2 e f)\right )}{2 \sqrt {c} \sqrt {d} \sqrt {e}}-g \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c^2 d^2}-\frac {2 (d+e x) (c d f-a e g)}{c^2 d^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

Input:

Int[((d + e*x)^2*(f + g*x))/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2), 
x]
 

Output:

(-2*(c*d*f - a*e*g)*(d + e*x))/(c^2*d^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c 
*d*e*x^2]) - (-(g*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) + ((3*a*e^2 
*g - c*d*(2*e*f + d*g))*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqr 
t[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*Sqrt[c]*Sqr 
t[d]*Sqrt[e]))/(c^2*d^2)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1092
Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2   Subst[I 
nt[1/(4*c - x^2), x], x, (b + 2*c*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a 
, b, c}, x]
 

rule 1160
Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol 
] :> Simp[e*((a + b*x + c*x^2)^(p + 1)/(2*c*(p + 1))), x] + Simp[(2*c*d - b 
*e)/(2*c)   Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] 
 && NeQ[p, -1]
 

rule 1211
Int[(((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.))/((a_.) + (b_.)* 
(x_) + (c_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[-2*(2*c*d - b*e)^(m - 2)*(c*( 
e*f + d*g) - b*e*g)^n*((d + e*x)/(c^(m + n - 1)*e^(n - 1)*Sqrt[a + b*x + c* 
x^2])), x] + Simp[1/(c^(m + n - 1)*e^(n - 2))   Int[ExpandToSum[((2*c*d - b 
*e)^(m - 1)*(c*(e*f + d*g) - b*e*g)^n - c^(m + n - 1)*e^n*(d + e*x)^(m - 1) 
*(f + g*x)^n)/(c*d - b*e - c*e*x), x]/Sqrt[a + b*x + c*x^2], x], x] /; Free 
Q[{a, b, c, d, e, f, g}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && IGtQ[m, 0] 
&& IGtQ[n, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(969\) vs. \(2(160)=320\).

Time = 2.06 (sec) , antiderivative size = 970, normalized size of antiderivative = 5.45

method result size
default \(\frac {2 d^{2} f \left (2 c d x e +a \,e^{2}+c \,d^{2}\right )}{\left (4 a c \,d^{2} e^{2}-\left (a \,e^{2}+c \,d^{2}\right )^{2}\right ) \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}+e \left (2 d g +e f \right ) \left (-\frac {x}{d e c \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}-\frac {\left (a \,e^{2}+c \,d^{2}\right ) \left (-\frac {1}{d e c \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}-\frac {\left (a \,e^{2}+c \,d^{2}\right ) \left (2 c d x e +a \,e^{2}+c \,d^{2}\right )}{d e c \left (4 a c \,d^{2} e^{2}-\left (a \,e^{2}+c \,d^{2}\right )^{2}\right ) \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}\right )}{2 d e c}+\frac {\ln \left (\frac {\frac {1}{2} a \,e^{2}+\frac {1}{2} c \,d^{2}+c d x e}{\sqrt {d e c}}+\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}\right )}{d e c \sqrt {d e c}}\right )+d \left (d g +2 e f \right ) \left (-\frac {1}{d e c \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}-\frac {\left (a \,e^{2}+c \,d^{2}\right ) \left (2 c d x e +a \,e^{2}+c \,d^{2}\right )}{d e c \left (4 a c \,d^{2} e^{2}-\left (a \,e^{2}+c \,d^{2}\right )^{2}\right ) \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}\right )+e^{2} g \left (\frac {x^{2}}{d e c \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}-\frac {3 \left (a \,e^{2}+c \,d^{2}\right ) \left (-\frac {x}{d e c \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}-\frac {\left (a \,e^{2}+c \,d^{2}\right ) \left (-\frac {1}{d e c \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}-\frac {\left (a \,e^{2}+c \,d^{2}\right ) \left (2 c d x e +a \,e^{2}+c \,d^{2}\right )}{d e c \left (4 a c \,d^{2} e^{2}-\left (a \,e^{2}+c \,d^{2}\right )^{2}\right ) \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}\right )}{2 d e c}+\frac {\ln \left (\frac {\frac {1}{2} a \,e^{2}+\frac {1}{2} c \,d^{2}+c d x e}{\sqrt {d e c}}+\sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}\right )}{d e c \sqrt {d e c}}\right )}{2 d e c}-\frac {2 a \left (-\frac {1}{d e c \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}-\frac {\left (a \,e^{2}+c \,d^{2}\right ) \left (2 c d x e +a \,e^{2}+c \,d^{2}\right )}{d e c \left (4 a c \,d^{2} e^{2}-\left (a \,e^{2}+c \,d^{2}\right )^{2}\right ) \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}\right )}{c}\right )\) \(970\)

Input:

int((e*x+d)^2*(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(3/2),x,method=_RE 
TURNVERBOSE)
 

Output:

2*d^2*f*(2*c*d*e*x+a*e^2+c*d^2)/(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/(a*d*e+(a* 
e^2+c*d^2)*x+c*d*x^2*e)^(1/2)+e*(2*d*g+e*f)*(-x/d/e/c/(a*d*e+(a*e^2+c*d^2) 
*x+c*d*x^2*e)^(1/2)-1/2*(a*e^2+c*d^2)/d/e/c*(-1/d/e/c/(a*d*e+(a*e^2+c*d^2) 
*x+c*d*x^2*e)^(1/2)-(a*e^2+c*d^2)/d/e/c*(2*c*d*e*x+a*e^2+c*d^2)/(4*a*c*d^2 
*e^2-(a*e^2+c*d^2)^2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2))+1/d/e/c*ln( 
(1/2*a*e^2+1/2*c*d^2+c*d*x*e)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2 
*e)^(1/2))/(d*e*c)^(1/2))+d*(d*g+2*e*f)*(-1/d/e/c/(a*d*e+(a*e^2+c*d^2)*x+c 
*d*x^2*e)^(1/2)-(a*e^2+c*d^2)/d/e/c*(2*c*d*e*x+a*e^2+c*d^2)/(4*a*c*d^2*e^2 
-(a*e^2+c*d^2)^2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2))+e^2*g*(x^2/d/e/ 
c/(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)-3/2*(a*e^2+c*d^2)/d/e/c*(-x/d/e/ 
c/(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)-1/2*(a*e^2+c*d^2)/d/e/c*(-1/d/e/ 
c/(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)-(a*e^2+c*d^2)/d/e/c*(2*c*d*e*x+a 
*e^2+c*d^2)/(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2 
*e)^(1/2))+1/d/e/c*ln((1/2*a*e^2+1/2*c*d^2+c*d*x*e)/(d*e*c)^(1/2)+(a*d*e+( 
a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2))/(d*e*c)^(1/2))-2*a/c*(-1/d/e/c/(a*d*e+(a* 
e^2+c*d^2)*x+c*d*x^2*e)^(1/2)-(a*e^2+c*d^2)/d/e/c*(2*c*d*e*x+a*e^2+c*d^2)/ 
(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.44 (sec) , antiderivative size = 512, normalized size of antiderivative = 2.88 \[ \int \frac {(d+e x)^2 (f+g x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\left [-\frac {{\left (2 \, a c d e^{2} f + {\left (a c d^{2} e - 3 \, a^{2} e^{3}\right )} g + {\left (2 \, c^{2} d^{2} e f + {\left (c^{2} d^{3} - 3 \, a c d e^{2}\right )} g\right )} x\right )} \sqrt {c d e} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} - 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {c d e} + 8 \, {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right ) - 4 \, {\left (c^{2} d^{2} e g x - 2 \, c^{2} d^{2} e f + 3 \, a c d e^{2} g\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{4 \, {\left (c^{4} d^{4} e x + a c^{3} d^{3} e^{2}\right )}}, -\frac {{\left (2 \, a c d e^{2} f + {\left (a c d^{2} e - 3 \, a^{2} e^{3}\right )} g + {\left (2 \, c^{2} d^{2} e f + {\left (c^{2} d^{3} - 3 \, a c d e^{2}\right )} g\right )} x\right )} \sqrt {-c d e} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt {-c d e}}{2 \, {\left (c^{2} d^{2} e^{2} x^{2} + a c d^{2} e^{2} + {\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )}}\right ) - 2 \, {\left (c^{2} d^{2} e g x - 2 \, c^{2} d^{2} e f + 3 \, a c d e^{2} g\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{2 \, {\left (c^{4} d^{4} e x + a c^{3} d^{3} e^{2}\right )}}\right ] \] Input:

integrate((e*x+d)^2*(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, alg 
orithm="fricas")
 

Output:

[-1/4*((2*a*c*d*e^2*f + (a*c*d^2*e - 3*a^2*e^3)*g + (2*c^2*d^2*e*f + (c^2* 
d^3 - 3*a*c*d*e^2)*g)*x)*sqrt(c*d*e)*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a 
*c*d^2*e^2 + a^2*e^4 - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c* 
d*e*x + c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) - 4*(c^2 
*d^2*e*g*x - 2*c^2*d^2*e*f + 3*a*c*d*e^2*g)*sqrt(c*d*e*x^2 + a*d*e + (c*d^ 
2 + a*e^2)*x))/(c^4*d^4*e*x + a*c^3*d^3*e^2), -1/2*((2*a*c*d*e^2*f + (a*c* 
d^2*e - 3*a^2*e^3)*g + (2*c^2*d^2*e*f + (c^2*d^3 - 3*a*c*d*e^2)*g)*x)*sqrt 
(-c*d*e)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x 
 + c*d^2 + a*e^2)*sqrt(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e 
 + a*c*d*e^3)*x)) - 2*(c^2*d^2*e*g*x - 2*c^2*d^2*e*f + 3*a*c*d*e^2*g)*sqrt 
(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c^4*d^4*e*x + a*c^3*d^3*e^2)]
 

Sympy [F]

\[ \int \frac {(d+e x)^2 (f+g x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int \frac {\left (d + e x\right )^{2} \left (f + g x\right )}{\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((e*x+d)**2*(g*x+f)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x 
)
 

Output:

Integral((d + e*x)**2*(f + g*x)/((d + e*x)*(a*e + c*d*x))**(3/2), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {(d+e x)^2 (f+g x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((e*x+d)^2*(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, alg 
orithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(a*e^2-c*d^2>0)', see `assume?` f 
or more de
 

Giac [F(-2)]

Exception generated. \[ \int \frac {(d+e x)^2 (f+g x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((e*x+d)^2*(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, alg 
orithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Unable to divide, perhaps due to ro 
unding error%%%{%%{[%%%{2,[3,3,4]%%%},0]:[1,0,%%%{-1,[1,1,1]%%%}]%%},[2,2] 
%%%}+%%%{
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(d+e x)^2 (f+g x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int \frac {\left (f+g\,x\right )\,{\left (d+e\,x\right )}^2}{{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}} \,d x \] Input:

int(((f + g*x)*(d + e*x)^2)/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2), 
x)
 

Output:

int(((f + g*x)*(d + e*x)^2)/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2), 
 x)
                                                                                    
                                                                                    
 

Reduce [B] (verification not implemented)

Time = 0.51 (sec) , antiderivative size = 324, normalized size of antiderivative = 1.82 \[ \int \frac {(d+e x)^2 (f+g x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\frac {-12 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {c d x +a e}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}}{\sqrt {a \,e^{2}-c \,d^{2}}}\right ) a \,e^{2} g +4 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {c d x +a e}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}}{\sqrt {a \,e^{2}-c \,d^{2}}}\right ) c \,d^{2} g +8 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {c d x +a e}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {e x +d}}{\sqrt {a \,e^{2}-c \,d^{2}}}\right ) c d e f +9 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {c d x +a e}\, a \,e^{2} g -\sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {c d x +a e}\, c \,d^{2} g -8 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {c d x +a e}\, c d e f +12 \sqrt {e x +d}\, a c d \,e^{2} g -8 \sqrt {e x +d}\, c^{2} d^{2} e f +4 \sqrt {e x +d}\, c^{2} d^{2} e g x}{4 \sqrt {c d x +a e}\, c^{3} d^{3} e} \] Input:

int((e*x+d)^2*(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x)
 

Output:

( - 12*sqrt(e)*sqrt(d)*sqrt(c)*sqrt(a*e + c*d*x)*log((sqrt(e)*sqrt(a*e + c 
*d*x) + sqrt(d)*sqrt(c)*sqrt(d + e*x))/sqrt(a*e**2 - c*d**2))*a*e**2*g + 4 
*sqrt(e)*sqrt(d)*sqrt(c)*sqrt(a*e + c*d*x)*log((sqrt(e)*sqrt(a*e + c*d*x) 
+ sqrt(d)*sqrt(c)*sqrt(d + e*x))/sqrt(a*e**2 - c*d**2))*c*d**2*g + 8*sqrt( 
e)*sqrt(d)*sqrt(c)*sqrt(a*e + c*d*x)*log((sqrt(e)*sqrt(a*e + c*d*x) + sqrt 
(d)*sqrt(c)*sqrt(d + e*x))/sqrt(a*e**2 - c*d**2))*c*d*e*f + 9*sqrt(e)*sqrt 
(d)*sqrt(c)*sqrt(a*e + c*d*x)*a*e**2*g - sqrt(e)*sqrt(d)*sqrt(c)*sqrt(a*e 
+ c*d*x)*c*d**2*g - 8*sqrt(e)*sqrt(d)*sqrt(c)*sqrt(a*e + c*d*x)*c*d*e*f + 
12*sqrt(d + e*x)*a*c*d*e**2*g - 8*sqrt(d + e*x)*c**2*d**2*e*f + 4*sqrt(d + 
 e*x)*c**2*d**2*e*g*x)/(4*sqrt(a*e + c*d*x)*c**3*d**3*e)