\(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{(d+e x)^{3/2} (f+g x)} \, dx\) [16]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 46, antiderivative size = 179 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)} \, dx=-\frac {2 (c d f-a e g) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g^2 \sqrt {d+e x}}+\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2}}+\frac {2 (c d f-a e g)^{3/2} \arctan \left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{g^{5/2}} \] Output:

-2*(-a*e*g+c*d*f)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/g^2/(e*x+d)^(1/2 
)+2/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/g/(e*x+d)^(3/2)+2*(-a*e*g+c* 
d*f)^(3/2)*arctan(g^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e*g+ 
c*d*f)^(1/2)/(e*x+d)^(1/2))/g^(5/2)
 

Mathematica [A] (verified)

Time = 0.30 (sec) , antiderivative size = 132, normalized size of antiderivative = 0.74 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)} \, dx=\frac {2 \sqrt {a e+c d x} \sqrt {d+e x} \left (\sqrt {g} \sqrt {a e+c d x} (4 a e g+c d (-3 f+g x))+3 (c d f-a e g)^{3/2} \arctan \left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c d f-a e g}}\right )\right )}{3 g^{5/2} \sqrt {(a e+c d x) (d+e x)}} \] Input:

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/((d + e*x)^(3/2)*( 
f + g*x)),x]
 

Output:

(2*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*(Sqrt[g]*Sqrt[a*e + c*d*x]*(4*a*e*g + c 
*d*(-3*f + g*x)) + 3*(c*d*f - a*e*g)^(3/2)*ArcTan[(Sqrt[g]*Sqrt[a*e + c*d* 
x])/Sqrt[c*d*f - a*e*g]]))/(3*g^(5/2)*Sqrt[(a*e + c*d*x)*(d + e*x)])
 

Rubi [A] (verified)

Time = 0.82 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.03, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {1250, 1250, 1255, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)} \, dx\)

\(\Big \downarrow \) 1250

\(\displaystyle \frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2}}-\frac {(c d f-a e g) \int \frac {\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}{\sqrt {d+e x} (f+g x)}dx}{g}\)

\(\Big \downarrow \) 1250

\(\displaystyle \frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2}}-\frac {(c d f-a e g) \left (\frac {2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{g \sqrt {d+e x}}-\frac {(c d f-a e g) \int \frac {\sqrt {d+e x}}{(f+g x) \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{g}\right )}{g}\)

\(\Big \downarrow \) 1255

\(\displaystyle \frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2}}-\frac {(c d f-a e g) \left (\frac {2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{g \sqrt {d+e x}}-\frac {2 e^2 (c d f-a e g) \int \frac {1}{(c d f-a e g) e^2+\frac {g \left (c d e x^2+\left (c d^2+a e^2\right ) x+a d e\right ) e^2}{d+e x}}d\frac {\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}{\sqrt {d+e x}}}{g}\right )}{g}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2}}-\frac {(c d f-a e g) \left (\frac {2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{g \sqrt {d+e x}}-\frac {2 \sqrt {c d f-a e g} \arctan \left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{g^{3/2}}\right )}{g}\)

Input:

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/((d + e*x)^(3/2)*(f + g* 
x)),x]
 

Output:

(2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(3*g*(d + e*x)^(3/2)) - 
((c*d*f - a*e*g)*((2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(g*Sqrt[ 
d + e*x]) - (2*Sqrt[c*d*f - a*e*g]*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d^2 + a 
*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/g^(3/2)))/g
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1250
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
+ (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(d + e*x)^m)*(f + g*x)^(n + 1)*(( 
a + b*x + c*x^2)^p/(g*(m - n - 1))), x] - Simp[m*((c*e*f + c*d*g - b*e*g)/( 
e^2*g*(m - n - 1)))   Int[(d + e*x)^(m + 1)*(f + g*x)^n*(a + b*x + c*x^2)^( 
p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[c*d^2 - b*d*e + 
 a*e^2, 0] && EqQ[m + p, 0] && GtQ[p, 0] && NeQ[m - n - 1, 0] &&  !IGtQ[n, 
0] &&  !(IntegerQ[n + p] && LtQ[n + p + 2, 0]) && RationalQ[n]
 

rule 1255
Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + 
 (c_.)*(x_)^2]), x_Symbol] :> Simp[2*e^2   Subst[Int[1/(c*(e*f + d*g) - b*e 
*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{ 
a, b, c, d, e, f, g}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0]
 
Maple [A] (verified)

Time = 2.80 (sec) , antiderivative size = 253, normalized size of antiderivative = 1.41

method result size
default \(-\frac {2 \sqrt {\left (e x +d \right ) \left (c d x +a e \right )}\, \left (3 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -d f c \right ) g}}\right ) a^{2} e^{2} g^{2}-6 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -d f c \right ) g}}\right ) a c d e f g +3 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -d f c \right ) g}}\right ) c^{2} d^{2} f^{2}-c d g x \sqrt {c d x +a e}\, \sqrt {\left (a e g -d f c \right ) g}-4 \sqrt {\left (a e g -d f c \right ) g}\, \sqrt {c d x +a e}\, a e g +3 \sqrt {\left (a e g -d f c \right ) g}\, \sqrt {c d x +a e}\, c d f \right )}{3 \sqrt {e x +d}\, \sqrt {c d x +a e}\, g^{2} \sqrt {\left (a e g -d f c \right ) g}}\) \(253\)

Input:

int((a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(3/2)/(e*x+d)^(3/2)/(g*x+f),x,method 
=_RETURNVERBOSE)
 

Output:

-2/3*((e*x+d)*(c*d*x+a*e))^(1/2)*(3*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c* 
d*f)*g)^(1/2))*a^2*e^2*g^2-6*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g) 
^(1/2))*a*c*d*e*f*g+3*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2)) 
*c^2*d^2*f^2-c*d*g*x*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)-4*((a*e*g-c 
*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*a*e*g+3*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a* 
e)^(1/2)*c*d*f)/(e*x+d)^(1/2)/(c*d*x+a*e)^(1/2)/g^2/((a*e*g-c*d*f)*g)^(1/2 
)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 440, normalized size of antiderivative = 2.46 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)} \, dx=\left [-\frac {3 \, {\left (c d^{2} f - a d e g + {\left (c d e f - a e^{2} g\right )} x\right )} \sqrt {-\frac {c d f - a e g}{g}} \log \left (-\frac {c d e g x^{2} - c d^{2} f + 2 \, a d e g - 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d} g \sqrt {-\frac {c d f - a e g}{g}} - {\left (c d e f - {\left (c d^{2} + 2 \, a e^{2}\right )} g\right )} x}{e g x^{2} + d f + {\left (e f + d g\right )} x}\right ) - 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (c d g x - 3 \, c d f + 4 \, a e g\right )} \sqrt {e x + d}}{3 \, {\left (e g^{2} x + d g^{2}\right )}}, -\frac {2 \, {\left (3 \, {\left (c d^{2} f - a d e g + {\left (c d e f - a e^{2} g\right )} x\right )} \sqrt {\frac {c d f - a e g}{g}} \arctan \left (-\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d} g \sqrt {\frac {c d f - a e g}{g}}}{c d^{2} f - a d e g + {\left (c d e f - a e^{2} g\right )} x}\right ) - \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (c d g x - 3 \, c d f + 4 \, a e g\right )} \sqrt {e x + d}\right )}}{3 \, {\left (e g^{2} x + d g^{2}\right )}}\right ] \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f),x, 
 algorithm="fricas")
 

Output:

[-1/3*(3*(c*d^2*f - a*d*e*g + (c*d*e*f - a*e^2*g)*x)*sqrt(-(c*d*f - a*e*g) 
/g)*log(-(c*d*e*g*x^2 - c*d^2*f + 2*a*d*e*g - 2*sqrt(c*d*e*x^2 + a*d*e + ( 
c*d^2 + a*e^2)*x)*sqrt(e*x + d)*g*sqrt(-(c*d*f - a*e*g)/g) - (c*d*e*f - (c 
*d^2 + 2*a*e^2)*g)*x)/(e*g*x^2 + d*f + (e*f + d*g)*x)) - 2*sqrt(c*d*e*x^2 
+ a*d*e + (c*d^2 + a*e^2)*x)*(c*d*g*x - 3*c*d*f + 4*a*e*g)*sqrt(e*x + d))/ 
(e*g^2*x + d*g^2), -2/3*(3*(c*d^2*f - a*d*e*g + (c*d*e*f - a*e^2*g)*x)*sqr 
t((c*d*f - a*e*g)/g)*arctan(-sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*s 
qrt(e*x + d)*g*sqrt((c*d*f - a*e*g)/g)/(c*d^2*f - a*d*e*g + (c*d*e*f - a*e 
^2*g)*x)) - sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*g*x - 3*c*d*f 
 + 4*a*e*g)*sqrt(e*x + d))/(e*g^2*x + d*g^2)]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)} \, dx=\text {Timed out} \] Input:

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/(e*x+d)**(3/2)/(g*x+ 
f),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)} \, dx=\int { \frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}}}{{\left (e x + d\right )}^{\frac {3}{2}} {\left (g x + f\right )}} \,d x } \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f),x, 
 algorithm="maxima")
 

Output:

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)/((e*x + d)^(3/2)*( 
g*x + f)), x)
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 217, normalized size of antiderivative = 1.21 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)} \, dx=\frac {2 \, {\left (c^{2} d^{2} f^{2} {\left | e \right |} - 2 \, a c d e f g {\left | e \right |} + a^{2} e^{2} g^{2} {\left | e \right |}\right )} \arctan \left (\frac {\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} g}{\sqrt {c d f g - a e g^{2}} e}\right )}{\sqrt {c d f g - a e g^{2}} e g^{2}} - \frac {2 \, {\left (3 \, \sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} c d e^{10} f g {\left | e \right |} - 3 \, \sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} a e^{11} g^{2} {\left | e \right |} - {\left ({\left (e x + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {3}{2}} e^{8} g^{2} {\left | e \right |}\right )}}{3 \, e^{12} g^{3}} \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f),x, 
 algorithm="giac")
 

Output:

2*(c^2*d^2*f^2*abs(e) - 2*a*c*d*e*f*g*abs(e) + a^2*e^2*g^2*abs(e))*arctan( 
sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*g/(sqrt(c*d*f*g - a*e*g^2)*e))/(sq 
rt(c*d*f*g - a*e*g^2)*e*g^2) - 2/3*(3*sqrt((e*x + d)*c*d*e - c*d^2*e + a*e 
^3)*c*d*e^10*f*g*abs(e) - 3*sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*a*e^11 
*g^2*abs(e) - ((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(3/2)*e^8*g^2*abs(e))/(e 
^12*g^3)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)} \, dx=\int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}}{\left (f+g\,x\right )\,{\left (d+e\,x\right )}^{3/2}} \,d x \] Input:

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/((f + g*x)*(d + e*x)^(3/ 
2)),x)
 

Output:

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/((f + g*x)*(d + e*x)^(3/ 
2)), x)
 

Reduce [B] (verification not implemented)

Time = 0.56 (sec) , antiderivative size = 147, normalized size of antiderivative = 0.82 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)} \, dx=\frac {-2 \sqrt {g}\, \sqrt {-a e g +c d f}\, \mathit {atan} \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {g}\, \sqrt {-a e g +c d f}}\right ) a e g +2 \sqrt {g}\, \sqrt {-a e g +c d f}\, \mathit {atan} \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {g}\, \sqrt {-a e g +c d f}}\right ) c d f +\frac {8 \sqrt {c d x +a e}\, a e \,g^{2}}{3}-2 \sqrt {c d x +a e}\, c d f g +\frac {2 \sqrt {c d x +a e}\, c d \,g^{2} x}{3}}{g^{3}} \] Input:

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f),x)
 

Output:

(2*( - 3*sqrt(g)*sqrt( - a*e*g + c*d*f)*atan((sqrt(a*e + c*d*x)*g)/(sqrt(g 
)*sqrt( - a*e*g + c*d*f)))*a*e*g + 3*sqrt(g)*sqrt( - a*e*g + c*d*f)*atan(( 
sqrt(a*e + c*d*x)*g)/(sqrt(g)*sqrt( - a*e*g + c*d*f)))*c*d*f + 4*sqrt(a*e 
+ c*d*x)*a*e*g**2 - 3*sqrt(a*e + c*d*x)*c*d*f*g + sqrt(a*e + c*d*x)*c*d*g* 
*2*x))/(3*g**3)