\(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{(d+e x)^{3/2} (f+g x)^3} \, dx\) [18]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 46, antiderivative size = 195 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^3} \, dx=-\frac {3 c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 g^2 \sqrt {d+e x} (f+g x)}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{2 g (d+e x)^{3/2} (f+g x)^2}+\frac {3 c^2 d^2 \arctan \left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{4 g^{5/2} \sqrt {c d f-a e g}} \] Output:

-3/4*c*d*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/g^2/(e*x+d)^(1/2)/(g*x+f) 
-1/2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/g/(e*x+d)^(3/2)/(g*x+f)^2+3/4 
*c^2*d^2*arctan(g^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e*g+c* 
d*f)^(1/2)/(e*x+d)^(1/2))/g^(5/2)/(-a*e*g+c*d*f)^(1/2)
 

Mathematica [A] (verified)

Time = 0.74 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.69 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^3} \, dx=\frac {\sqrt {(a e+c d x) (d+e x)} \left (-\frac {\sqrt {g} (2 a e g+c d (3 f+5 g x))}{(f+g x)^2}+\frac {3 c^2 d^2 \arctan \left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c d f-a e g}}\right )}{\sqrt {c d f-a e g} \sqrt {a e+c d x}}\right )}{4 g^{5/2} \sqrt {d+e x}} \] Input:

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/((d + e*x)^(3/2)*( 
f + g*x)^3),x]
 

Output:

(Sqrt[(a*e + c*d*x)*(d + e*x)]*(-((Sqrt[g]*(2*a*e*g + c*d*(3*f + 5*g*x)))/ 
(f + g*x)^2) + (3*c^2*d^2*ArcTan[(Sqrt[g]*Sqrt[a*e + c*d*x])/Sqrt[c*d*f - 
a*e*g]])/(Sqrt[c*d*f - a*e*g]*Sqrt[a*e + c*d*x])))/(4*g^(5/2)*Sqrt[d + e*x 
])
 

Rubi [A] (verified)

Time = 0.76 (sec) , antiderivative size = 194, normalized size of antiderivative = 0.99, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {1249, 1249, 1255, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^3} \, dx\)

\(\Big \downarrow \) 1249

\(\displaystyle \frac {3 c d \int \frac {\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}{\sqrt {d+e x} (f+g x)^2}dx}{4 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{2 g (d+e x)^{3/2} (f+g x)^2}\)

\(\Big \downarrow \) 1249

\(\displaystyle \frac {3 c d \left (\frac {c d \int \frac {\sqrt {d+e x}}{(f+g x) \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{2 g}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{g \sqrt {d+e x} (f+g x)}\right )}{4 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{2 g (d+e x)^{3/2} (f+g x)^2}\)

\(\Big \downarrow \) 1255

\(\displaystyle \frac {3 c d \left (\frac {c d e^2 \int \frac {1}{(c d f-a e g) e^2+\frac {g \left (c d e x^2+\left (c d^2+a e^2\right ) x+a d e\right ) e^2}{d+e x}}d\frac {\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}{\sqrt {d+e x}}}{g}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{g \sqrt {d+e x} (f+g x)}\right )}{4 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{2 g (d+e x)^{3/2} (f+g x)^2}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {3 c d \left (\frac {c d \arctan \left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{g^{3/2} \sqrt {c d f-a e g}}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{g \sqrt {d+e x} (f+g x)}\right )}{4 g}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{2 g (d+e x)^{3/2} (f+g x)^2}\)

Input:

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/((d + e*x)^(3/2)*(f + g* 
x)^3),x]
 

Output:

-1/2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(g*(d + e*x)^(3/2)*(f + 
 g*x)^2) + (3*c*d*(-(Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(g*Sqrt[d 
 + e*x]*(f + g*x))) + (c*d*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x 
+ c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(g^(3/2)*Sqrt[c*d*f - 
a*e*g])))/(4*g)
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1249
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
+ (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^m*(f + g*x)^(n + 1)*((a + 
 b*x + c*x^2)^p/(g*(n + 1))), x] + Simp[c*(m/(e*g*(n + 1)))   Int[(d + e*x) 
^(m + 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b 
, c, d, e, f, g}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p, 0] && G 
tQ[p, 0] && LtQ[n, -1] &&  !(IntegerQ[n + p] && LeQ[n + p + 2, 0])
 

rule 1255
Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + 
 (c_.)*(x_)^2]), x_Symbol] :> Simp[2*e^2   Subst[Int[1/(c*(e*f + d*g) - b*e 
*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{ 
a, b, c, d, e, f, g}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0]
 
Maple [A] (verified)

Time = 2.72 (sec) , antiderivative size = 266, normalized size of antiderivative = 1.36

method result size
default \(-\frac {\sqrt {\left (e x +d \right ) \left (c d x +a e \right )}\, \left (3 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -d f c \right ) g}}\right ) c^{2} d^{2} g^{2} x^{2}+6 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -d f c \right ) g}}\right ) c^{2} d^{2} f g x +3 \,\operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -d f c \right ) g}}\right ) c^{2} d^{2} f^{2}+5 c d g x \sqrt {c d x +a e}\, \sqrt {\left (a e g -d f c \right ) g}+2 \sqrt {\left (a e g -d f c \right ) g}\, \sqrt {c d x +a e}\, a e g +3 \sqrt {\left (a e g -d f c \right ) g}\, \sqrt {c d x +a e}\, c d f \right )}{4 \sqrt {e x +d}\, \sqrt {c d x +a e}\, g^{2} \left (g x +f \right )^{2} \sqrt {\left (a e g -d f c \right ) g}}\) \(266\)

Input:

int((a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^3,x,meth 
od=_RETURNVERBOSE)
 

Output:

-1/4*((e*x+d)*(c*d*x+a*e))^(1/2)*(3*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c* 
d*f)*g)^(1/2))*c^2*d^2*g^2*x^2+6*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f 
)*g)^(1/2))*c^2*d^2*f*g*x+3*arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^ 
(1/2))*c^2*d^2*f^2+5*c*d*g*x*(c*d*x+a*e)^(1/2)*((a*e*g-c*d*f)*g)^(1/2)+2*( 
(a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*a*e*g+3*((a*e*g-c*d*f)*g)^(1/2)*( 
c*d*x+a*e)^(1/2)*c*d*f)/(e*x+d)^(1/2)/(c*d*x+a*e)^(1/2)/g^2/(g*x+f)^2/((a* 
e*g-c*d*f)*g)^(1/2)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 400 vs. \(2 (169) = 338\).

Time = 0.11 (sec) , antiderivative size = 841, normalized size of antiderivative = 4.31 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^3} \, dx =\text {Too large to display} \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^3, 
x, algorithm="fricas")
 

Output:

[-1/8*(3*(c^2*d^2*e*g^2*x^3 + c^2*d^3*f^2 + (2*c^2*d^2*e*f*g + c^2*d^3*g^2 
)*x^2 + (c^2*d^2*e*f^2 + 2*c^2*d^3*f*g)*x)*sqrt(-c*d*f*g + a*e*g^2)*log(-( 
c*d*e*g*x^2 - c*d^2*f + 2*a*d*e*g - (c*d*e*f - (c*d^2 + 2*a*e^2)*g)*x - 2* 
sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-c*d*f*g + a*e*g^2)*sqrt( 
e*x + d))/(e*g*x^2 + d*f + (e*f + d*g)*x)) + 2*(3*c^2*d^2*f^2*g - a*c*d*e* 
f*g^2 - 2*a^2*e^2*g^3 + 5*(c^2*d^2*f*g^2 - a*c*d*e*g^3)*x)*sqrt(c*d*e*x^2 
+ a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(c*d^2*f^3*g^3 - a*d*e*f^2*g^4 
 + (c*d*e*f*g^5 - a*e^2*g^6)*x^3 + (2*c*d*e*f^2*g^4 - a*d*e*g^6 + (c*d^2 - 
 2*a*e^2)*f*g^5)*x^2 + (c*d*e*f^3*g^3 - 2*a*d*e*f*g^5 + (2*c*d^2 - a*e^2)* 
f^2*g^4)*x), -1/4*(3*(c^2*d^2*e*g^2*x^3 + c^2*d^3*f^2 + (2*c^2*d^2*e*f*g + 
 c^2*d^3*g^2)*x^2 + (c^2*d^2*e*f^2 + 2*c^2*d^3*f*g)*x)*sqrt(c*d*f*g - a*e* 
g^2)*arctan(-sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d*f*g - a* 
e*g^2)*sqrt(e*x + d)/(c*d^2*f - a*d*e*g + (c*d*e*f - a*e^2*g)*x)) + (3*c^2 
*d^2*f^2*g - a*c*d*e*f*g^2 - 2*a^2*e^2*g^3 + 5*(c^2*d^2*f*g^2 - a*c*d*e*g^ 
3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(c*d^2*f^ 
3*g^3 - a*d*e*f^2*g^4 + (c*d*e*f*g^5 - a*e^2*g^6)*x^3 + (2*c*d*e*f^2*g^4 - 
 a*d*e*g^6 + (c*d^2 - 2*a*e^2)*f*g^5)*x^2 + (c*d*e*f^3*g^3 - 2*a*d*e*f*g^5 
 + (2*c*d^2 - a*e^2)*f^2*g^4)*x)]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^3} \, dx=\text {Timed out} \] Input:

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/(e*x+d)**(3/2)/(g*x+ 
f)**3,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^3} \, dx=\int { \frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}}}{{\left (e x + d\right )}^{\frac {3}{2}} {\left (g x + f\right )}^{3}} \,d x } \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^3, 
x, algorithm="maxima")
 

Output:

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)/((e*x + d)^(3/2)*( 
g*x + f)^3), x)
 

Giac [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 236, normalized size of antiderivative = 1.21 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^3} \, dx=\frac {3 \, c^{2} d^{2} {\left | e \right |} \arctan \left (\frac {\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} g}{\sqrt {c d f g - a e g^{2}} e}\right )}{4 \, \sqrt {c d f g - a e g^{2}} e g^{2}} - \frac {3 \, \sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} c^{3} d^{3} e^{2} f {\left | e \right |} - 3 \, \sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} a c^{2} d^{2} e^{3} g {\left | e \right |} + 5 \, {\left ({\left (e x + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {3}{2}} c^{2} d^{2} g {\left | e \right |}}{4 \, {\left (c d e^{2} f - a e^{3} g + {\left ({\left (e x + d\right )} c d e - c d^{2} e + a e^{3}\right )} g\right )}^{2} g^{2}} \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^3, 
x, algorithm="giac")
 

Output:

3/4*c^2*d^2*abs(e)*arctan(sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*g/(sqrt( 
c*d*f*g - a*e*g^2)*e))/(sqrt(c*d*f*g - a*e*g^2)*e*g^2) - 1/4*(3*sqrt((e*x 
+ d)*c*d*e - c*d^2*e + a*e^3)*c^3*d^3*e^2*f*abs(e) - 3*sqrt((e*x + d)*c*d* 
e - c*d^2*e + a*e^3)*a*c^2*d^2*e^3*g*abs(e) + 5*((e*x + d)*c*d*e - c*d^2*e 
 + a*e^3)^(3/2)*c^2*d^2*g*abs(e))/((c*d*e^2*f - a*e^3*g + ((e*x + d)*c*d*e 
 - c*d^2*e + a*e^3)*g)^2*g^2)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^3} \, dx=\int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}}{{\left (f+g\,x\right )}^3\,{\left (d+e\,x\right )}^{3/2}} \,d x \] Input:

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/((f + g*x)^3*(d + e*x)^( 
3/2)),x)
 

Output:

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/((f + g*x)^3*(d + e*x)^( 
3/2)), x)
 

Reduce [B] (verification not implemented)

Time = 0.46 (sec) , antiderivative size = 324, normalized size of antiderivative = 1.66 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^3} \, dx=\frac {-3 \sqrt {g}\, \sqrt {-a e g +c d f}\, \mathit {atan} \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {g}\, \sqrt {-a e g +c d f}}\right ) c^{2} d^{2} f^{2}-6 \sqrt {g}\, \sqrt {-a e g +c d f}\, \mathit {atan} \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {g}\, \sqrt {-a e g +c d f}}\right ) c^{2} d^{2} f g x -3 \sqrt {g}\, \sqrt {-a e g +c d f}\, \mathit {atan} \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {g}\, \sqrt {-a e g +c d f}}\right ) c^{2} d^{2} g^{2} x^{2}-2 \sqrt {c d x +a e}\, a^{2} e^{2} g^{3}-\sqrt {c d x +a e}\, a c d e f \,g^{2}-5 \sqrt {c d x +a e}\, a c d e \,g^{3} x +3 \sqrt {c d x +a e}\, c^{2} d^{2} f^{2} g +5 \sqrt {c d x +a e}\, c^{2} d^{2} f \,g^{2} x}{4 g^{3} \left (a e \,g^{3} x^{2}-c d f \,g^{2} x^{2}+2 a e f \,g^{2} x -2 c d \,f^{2} g x +a e \,f^{2} g -c d \,f^{3}\right )} \] Input:

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f)^3,x)
 

Output:

( - 3*sqrt(g)*sqrt( - a*e*g + c*d*f)*atan((sqrt(a*e + c*d*x)*g)/(sqrt(g)*s 
qrt( - a*e*g + c*d*f)))*c**2*d**2*f**2 - 6*sqrt(g)*sqrt( - a*e*g + c*d*f)* 
atan((sqrt(a*e + c*d*x)*g)/(sqrt(g)*sqrt( - a*e*g + c*d*f)))*c**2*d**2*f*g 
*x - 3*sqrt(g)*sqrt( - a*e*g + c*d*f)*atan((sqrt(a*e + c*d*x)*g)/(sqrt(g)* 
sqrt( - a*e*g + c*d*f)))*c**2*d**2*g**2*x**2 - 2*sqrt(a*e + c*d*x)*a**2*e* 
*2*g**3 - sqrt(a*e + c*d*x)*a*c*d*e*f*g**2 - 5*sqrt(a*e + c*d*x)*a*c*d*e*g 
**3*x + 3*sqrt(a*e + c*d*x)*c**2*d**2*f**2*g + 5*sqrt(a*e + c*d*x)*c**2*d* 
*2*f*g**2*x)/(4*g**3*(a*e*f**2*g + 2*a*e*f*g**2*x + a*e*g**3*x**2 - c*d*f* 
*3 - 2*c*d*f**2*g*x - c*d*f*g**2*x**2))