\(\int \frac {(d+e x)^{3/2}}{(f+g x)^2 (a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx\) [47]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 46, antiderivative size = 195 \[ \int \frac {(d+e x)^{3/2}}{(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {3 c d \sqrt {d+e x}}{(c d f-a e g)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {\sqrt {d+e x}}{(c d f-a e g) (f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {3 c d \sqrt {g} \arctan \left (\frac {\sqrt {c d f-a e g} \sqrt {d+e x}}{\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{(c d f-a e g)^{5/2}} \] Output:

-3*c*d*(e*x+d)^(1/2)/(-a*e*g+c*d*f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1 
/2)+(e*x+d)^(1/2)/(-a*e*g+c*d*f)/(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2) 
^(1/2)+3*c*d*g^(1/2)*arctan(1/g^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1 
/2)*(-a*e*g+c*d*f)^(1/2)*(e*x+d)^(1/2))/(-a*e*g+c*d*f)^(5/2)
 

Mathematica [A] (verified)

Time = 0.56 (sec) , antiderivative size = 141, normalized size of antiderivative = 0.72 \[ \int \frac {(d+e x)^{3/2}}{(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {\sqrt {d+e x} \left (\sqrt {c d f-a e g} (a e g+c d (2 f+3 g x))+3 c d \sqrt {g} \sqrt {a e+c d x} (f+g x) \arctan \left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c d f-a e g}}\right )\right )}{(c d f-a e g)^{5/2} \sqrt {(a e+c d x) (d+e x)} (f+g x)} \] Input:

Integrate[(d + e*x)^(3/2)/((f + g*x)^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e* 
x^2)^(3/2)),x]
 

Output:

-((Sqrt[d + e*x]*(Sqrt[c*d*f - a*e*g]*(a*e*g + c*d*(2*f + 3*g*x)) + 3*c*d* 
Sqrt[g]*Sqrt[a*e + c*d*x]*(f + g*x)*ArcTan[(Sqrt[g]*Sqrt[a*e + c*d*x])/Sqr 
t[c*d*f - a*e*g]]))/((c*d*f - a*e*g)^(5/2)*Sqrt[(a*e + c*d*x)*(d + e*x)]*( 
f + g*x)))
 

Rubi [A] (verified)

Time = 0.79 (sec) , antiderivative size = 215, normalized size of antiderivative = 1.10, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {1252, 1254, 1255, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(d+e x)^{3/2}}{(f+g x)^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1252

\(\displaystyle -\frac {3 g \int \frac {\sqrt {d+e x}}{(f+g x)^2 \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{c d f-a e g}-\frac {2 \sqrt {d+e x}}{(f+g x) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)}\)

\(\Big \downarrow \) 1254

\(\displaystyle -\frac {3 g \left (\frac {c d \int \frac {\sqrt {d+e x}}{(f+g x) \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{2 (c d f-a e g)}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} (f+g x) (c d f-a e g)}\right )}{c d f-a e g}-\frac {2 \sqrt {d+e x}}{(f+g x) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)}\)

\(\Big \downarrow \) 1255

\(\displaystyle -\frac {3 g \left (\frac {c d e^2 \int \frac {1}{(c d f-a e g) e^2+\frac {g \left (c d e x^2+\left (c d^2+a e^2\right ) x+a d e\right ) e^2}{d+e x}}d\frac {\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}{\sqrt {d+e x}}}{c d f-a e g}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} (f+g x) (c d f-a e g)}\right )}{c d f-a e g}-\frac {2 \sqrt {d+e x}}{(f+g x) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {3 g \left (\frac {c d \arctan \left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{\sqrt {g} (c d f-a e g)^{3/2}}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} (f+g x) (c d f-a e g)}\right )}{c d f-a e g}-\frac {2 \sqrt {d+e x}}{(f+g x) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)}\)

Input:

Int[(d + e*x)^(3/2)/((f + g*x)^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^( 
3/2)),x]
 

Output:

(-2*Sqrt[d + e*x])/((c*d*f - a*e*g)*(f + g*x)*Sqrt[a*d*e + (c*d^2 + a*e^2) 
*x + c*d*e*x^2]) - (3*g*(Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/((c*d 
*f - a*e*g)*Sqrt[d + e*x]*(f + g*x)) + (c*d*ArcTan[(Sqrt[g]*Sqrt[a*d*e + ( 
c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(Sqrt 
[g]*(c*d*f - a*e*g)^(3/2))))/(c*d*f - a*e*g)
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1252
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
+ (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e^2*(d + e*x)^(m - 1)*(f + g*x)^(n 
+ 1)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(c*e*f + c*d*g - b*e*g))), x] + Si 
mp[e^2*g*((m - n - 2)/((p + 1)*(c*e*f + c*d*g - b*e*g)))   Int[(d + e*x)^(m 
 - 1)*(f + g*x)^n*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e 
, f, g, n}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p, 0] && LtQ[p, 
-1] && RationalQ[n]
 

rule 1254
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
+ (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-e^2)*(d + e*x)^(m - 1)*(f + g*x)^ 
(n + 1)*((a + b*x + c*x^2)^(p + 1)/((n + 1)*(c*e*f + c*d*g - b*e*g))), x] - 
 Simp[c*e*((m - n - 2)/((n + 1)*(c*e*f + c*d*g - b*e*g)))   Int[(d + e*x)^m 
*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, 
g, m, p}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p, 0] && LtQ[n, -1 
] && IntegerQ[2*p]
 

rule 1255
Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + 
 (c_.)*(x_)^2]), x_Symbol] :> Simp[2*e^2   Subst[Int[1/(c*(e*f + d*g) - b*e 
*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{ 
a, b, c, d, e, f, g}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0]
 
Maple [A] (verified)

Time = 2.79 (sec) , antiderivative size = 215, normalized size of antiderivative = 1.10

method result size
default \(\frac {\sqrt {\left (e x +d \right ) \left (c d x +a e \right )}\, \left (3 \sqrt {c d x +a e}\, \operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -d f c \right ) g}}\right ) c d \,g^{2} x +3 \sqrt {c d x +a e}\, \operatorname {arctanh}\left (\frac {g \sqrt {c d x +a e}}{\sqrt {\left (a e g -d f c \right ) g}}\right ) c d f g -3 \sqrt {\left (a e g -d f c \right ) g}\, c d g x -\sqrt {\left (a e g -d f c \right ) g}\, a e g -2 \sqrt {\left (a e g -d f c \right ) g}\, c d f \right )}{\sqrt {e x +d}\, \left (c d x +a e \right ) \left (a e g -d f c \right )^{2} \left (g x +f \right ) \sqrt {\left (a e g -d f c \right ) g}}\) \(215\)

Input:

int((e*x+d)^(3/2)/(g*x+f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(3/2),x,meth 
od=_RETURNVERBOSE)
 

Output:

1/(e*x+d)^(1/2)*((e*x+d)*(c*d*x+a*e))^(1/2)*(3*(c*d*x+a*e)^(1/2)*arctanh(g 
*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*c*d*g^2*x+3*(c*d*x+a*e)^(1/2)* 
arctanh(g*(c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2))*c*d*f*g-3*((a*e*g-c*d 
*f)*g)^(1/2)*c*d*g*x-((a*e*g-c*d*f)*g)^(1/2)*a*e*g-2*((a*e*g-c*d*f)*g)^(1/ 
2)*c*d*f)/(c*d*x+a*e)/(a*e*g-c*d*f)^2/(g*x+f)/((a*e*g-c*d*f)*g)^(1/2)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 512 vs. \(2 (175) = 350\).

Time = 0.12 (sec) , antiderivative size = 1067, normalized size of antiderivative = 5.47 \[ \int \frac {(d+e x)^{3/2}}{(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx =\text {Too large to display} \] Input:

integrate((e*x+d)^(3/2)/(g*x+f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2), 
x, algorithm="fricas")
 

Output:

[1/2*(3*(c^2*d^2*e*g*x^3 + a*c*d^2*e*f + (c^2*d^2*e*f + (c^2*d^3 + a*c*d*e 
^2)*g)*x^2 + (a*c*d^2*e*g + (c^2*d^3 + a*c*d*e^2)*f)*x)*sqrt(-g/(c*d*f - a 
*e*g))*log(-(c*d*e*g*x^2 - c*d^2*f + 2*a*d*e*g - 2*sqrt(c*d*e*x^2 + a*d*e 
+ (c*d^2 + a*e^2)*x)*(c*d*f - a*e*g)*sqrt(e*x + d)*sqrt(-g/(c*d*f - a*e*g) 
) - (c*d*e*f - (c*d^2 + 2*a*e^2)*g)*x)/(e*g*x^2 + d*f + (e*f + d*g)*x)) - 
2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(3*c*d*g*x + 2*c*d*f + a*e*g 
)*sqrt(e*x + d))/(a*c^2*d^3*e*f^3 - 2*a^2*c*d^2*e^2*f^2*g + a^3*d*e^3*f*g^ 
2 + (c^3*d^3*e*f^2*g - 2*a*c^2*d^2*e^2*f*g^2 + a^2*c*d*e^3*g^3)*x^3 + (c^3 
*d^3*e*f^3 + (c^3*d^4 - a*c^2*d^2*e^2)*f^2*g - (2*a*c^2*d^3*e + a^2*c*d*e^ 
3)*f*g^2 + (a^2*c*d^2*e^2 + a^3*e^4)*g^3)*x^2 + (a^3*d*e^3*g^3 + (c^3*d^4 
+ a*c^2*d^2*e^2)*f^3 - (a*c^2*d^3*e + 2*a^2*c*d*e^3)*f^2*g - (a^2*c*d^2*e^ 
2 - a^3*e^4)*f*g^2)*x), -(3*(c^2*d^2*e*g*x^3 + a*c*d^2*e*f + (c^2*d^2*e*f 
+ (c^2*d^3 + a*c*d*e^2)*g)*x^2 + (a*c*d^2*e*g + (c^2*d^3 + a*c*d*e^2)*f)*x 
)*sqrt(g/(c*d*f - a*e*g))*arctan(-sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2) 
*x)*(c*d*f - a*e*g)*sqrt(e*x + d)*sqrt(g/(c*d*f - a*e*g))/(c*d*e*g*x^2 + a 
*d*e*g + (c*d^2 + a*e^2)*g*x)) + sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)* 
x)*(3*c*d*g*x + 2*c*d*f + a*e*g)*sqrt(e*x + d))/(a*c^2*d^3*e*f^3 - 2*a^2*c 
*d^2*e^2*f^2*g + a^3*d*e^3*f*g^2 + (c^3*d^3*e*f^2*g - 2*a*c^2*d^2*e^2*f*g^ 
2 + a^2*c*d*e^3*g^3)*x^3 + (c^3*d^3*e*f^3 + (c^3*d^4 - a*c^2*d^2*e^2)*f^2* 
g - (2*a*c^2*d^3*e + a^2*c*d*e^3)*f*g^2 + (a^2*c*d^2*e^2 + a^3*e^4)*g^3...
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(d+e x)^{3/2}}{(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\text {Timed out} \] Input:

integrate((e*x+d)**(3/2)/(g*x+f)**2/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)** 
(3/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(d+e x)^{3/2}}{(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int { \frac {{\left (e x + d\right )}^{\frac {3}{2}}}{{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}} {\left (g x + f\right )}^{2}} \,d x } \] Input:

integrate((e*x+d)^(3/2)/(g*x+f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2), 
x, algorithm="maxima")
 

Output:

integrate((e*x + d)^(3/2)/((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)*( 
g*x + f)^2), x)
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 187, normalized size of antiderivative = 0.96 \[ \int \frac {(d+e x)^{3/2}}{(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {3 \, c d g \arctan \left (\frac {\sqrt {c d x + a e} g}{\sqrt {c d f g - a e g^{2}}}\right )}{{\left (c^{2} d^{2} f^{2} - 2 \, a c d e f g + a^{2} e^{2} g^{2}\right )} \sqrt {c d f g - a e g^{2}}} - \frac {2 \, c^{2} d^{2} f - 2 \, a c d e g + 3 \, {\left (c d x + a e\right )} c d g}{{\left (c^{2} d^{2} f^{2} - 2 \, a c d e f g + a^{2} e^{2} g^{2}\right )} {\left (\sqrt {c d x + a e} c d f - \sqrt {c d x + a e} a e g + {\left (c d x + a e\right )}^{\frac {3}{2}} g\right )}} \] Input:

integrate((e*x+d)^(3/2)/(g*x+f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2), 
x, algorithm="giac")
 

Output:

-3*c*d*g*arctan(sqrt(c*d*x + a*e)*g/sqrt(c*d*f*g - a*e*g^2))/((c^2*d^2*f^2 
 - 2*a*c*d*e*f*g + a^2*e^2*g^2)*sqrt(c*d*f*g - a*e*g^2)) - (2*c^2*d^2*f - 
2*a*c*d*e*g + 3*(c*d*x + a*e)*c*d*g)/((c^2*d^2*f^2 - 2*a*c*d*e*f*g + a^2*e 
^2*g^2)*(sqrt(c*d*x + a*e)*c*d*f - sqrt(c*d*x + a*e)*a*e*g + (c*d*x + a*e) 
^(3/2)*g))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(d+e x)^{3/2}}{(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int \frac {{\left (d+e\,x\right )}^{3/2}}{{\left (f+g\,x\right )}^2\,{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}} \,d x \] Input:

int((d + e*x)^(3/2)/((f + g*x)^2*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^( 
3/2)),x)
 

Output:

int((d + e*x)^(3/2)/((f + g*x)^2*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^( 
3/2)), x)
 

Reduce [B] (verification not implemented)

Time = 0.38 (sec) , antiderivative size = 288, normalized size of antiderivative = 1.48 \[ \int \frac {(d+e x)^{3/2}}{(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\frac {3 \sqrt {g}\, \sqrt {c d x +a e}\, \sqrt {-a e g +c d f}\, \mathit {atan} \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {g}\, \sqrt {-a e g +c d f}}\right ) c d f +3 \sqrt {g}\, \sqrt {c d x +a e}\, \sqrt {-a e g +c d f}\, \mathit {atan} \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {g}\, \sqrt {-a e g +c d f}}\right ) c d g x -a^{2} e^{2} g^{2}-a c d e f g -3 a c d e \,g^{2} x +2 c^{2} d^{2} f^{2}+3 c^{2} d^{2} f g x}{\sqrt {c d x +a e}\, \left (a^{3} e^{3} g^{4} x -3 a^{2} c d \,e^{2} f \,g^{3} x +3 a \,c^{2} d^{2} e \,f^{2} g^{2} x -c^{3} d^{3} f^{3} g x +a^{3} e^{3} f \,g^{3}-3 a^{2} c d \,e^{2} f^{2} g^{2}+3 a \,c^{2} d^{2} e \,f^{3} g -c^{3} d^{3} f^{4}\right )} \] Input:

int((e*x+d)^(3/2)/(g*x+f)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x)
 

Output:

(3*sqrt(g)*sqrt(a*e + c*d*x)*sqrt( - a*e*g + c*d*f)*atan((sqrt(a*e + c*d*x 
)*g)/(sqrt(g)*sqrt( - a*e*g + c*d*f)))*c*d*f + 3*sqrt(g)*sqrt(a*e + c*d*x) 
*sqrt( - a*e*g + c*d*f)*atan((sqrt(a*e + c*d*x)*g)/(sqrt(g)*sqrt( - a*e*g 
+ c*d*f)))*c*d*g*x - a**2*e**2*g**2 - a*c*d*e*f*g - 3*a*c*d*e*g**2*x + 2*c 
**2*d**2*f**2 + 3*c**2*d**2*f*g*x)/(sqrt(a*e + c*d*x)*(a**3*e**3*f*g**3 + 
a**3*e**3*g**4*x - 3*a**2*c*d*e**2*f**2*g**2 - 3*a**2*c*d*e**2*f*g**3*x + 
3*a*c**2*d**2*e*f**3*g + 3*a*c**2*d**2*e*f**2*g**2*x - c**3*d**3*f**4 - c* 
*3*d**3*f**3*g*x))