\(\int \frac {\sqrt {f+g x} (a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{(d+e x)^{3/2}} \, dx\) [66]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 48, antiderivative size = 292 \[ \int \frac {\sqrt {f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=-\frac {(c d f-a e g)^2 \sqrt {f+g x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 c d g^2 \sqrt {d+e x}}-\frac {\left (\frac {a e}{c d}-\frac {f}{g}\right ) \sqrt {f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{12 (d+e x)^{3/2}}+\frac {\sqrt {f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{3 c d (d+e x)^{5/2}}+\frac {(c d f-a e g)^3 \text {arctanh}\left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c} \sqrt {d} \sqrt {d+e x} \sqrt {f+g x}}\right )}{8 c^{3/2} d^{3/2} g^{5/2}} \] Output:

-1/8*(-a*e*g+c*d*f)^2*(g*x+f)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2 
)/c/d/g^2/(e*x+d)^(1/2)-1/12*(a*e/c/d-f/g)*(g*x+f)^(1/2)*(a*d*e+(a*e^2+c*d 
^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)+1/3*(g*x+f)^(1/2)*(a*d*e+(a*e^2+c*d^2 
)*x+c*d*e*x^2)^(5/2)/c/d/(e*x+d)^(5/2)+1/8*(-a*e*g+c*d*f)^3*arctanh(g^(1/2 
)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/c^(1/2)/d^(1/2)/(e*x+d)^(1/2)/(g 
*x+f)^(1/2))/c^(3/2)/d^(3/2)/g^(5/2)
 

Mathematica [A] (verified)

Time = 0.84 (sec) , antiderivative size = 199, normalized size of antiderivative = 0.68 \[ \int \frac {\sqrt {f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=\frac {((a e+c d x) (d+e x))^{3/2} \left (\frac {\sqrt {c} \sqrt {d} \sqrt {g} \sqrt {f+g x} \left (3 a^2 e^2 g^2+2 a c d e g (4 f+7 g x)+c^2 d^2 \left (-3 f^2+2 f g x+8 g^2 x^2\right )\right )}{a e+c d x}+\frac {3 (c d f-a e g)^3 \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {f+g x}}{\sqrt {g} \sqrt {a e+c d x}}\right )}{(a e+c d x)^{3/2}}\right )}{24 c^{3/2} d^{3/2} g^{5/2} (d+e x)^{3/2}} \] Input:

Integrate[(Sqrt[f + g*x]*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(d 
 + e*x)^(3/2),x]
 

Output:

(((a*e + c*d*x)*(d + e*x))^(3/2)*((Sqrt[c]*Sqrt[d]*Sqrt[g]*Sqrt[f + g*x]*( 
3*a^2*e^2*g^2 + 2*a*c*d*e*g*(4*f + 7*g*x) + c^2*d^2*(-3*f^2 + 2*f*g*x + 8* 
g^2*x^2)))/(a*e + c*d*x) + (3*(c*d*f - a*e*g)^3*ArcTanh[(Sqrt[c]*Sqrt[d]*S 
qrt[f + g*x])/(Sqrt[g]*Sqrt[a*e + c*d*x])])/(a*e + c*d*x)^(3/2)))/(24*c^(3 
/2)*d^(3/2)*g^(5/2)*(d + e*x)^(3/2))
 

Rubi [A] (verified)

Time = 1.09 (sec) , antiderivative size = 313, normalized size of antiderivative = 1.07, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {1250, 1250, 1253, 1268, 66, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {f+g x} \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx\)

\(\Big \downarrow \) 1250

\(\displaystyle \frac {(f+g x)^{3/2} \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2}}-\frac {(c d f-a e g) \int \frac {\sqrt {f+g x} \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}{\sqrt {d+e x}}dx}{2 g}\)

\(\Big \downarrow \) 1250

\(\displaystyle \frac {(f+g x)^{3/2} \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2}}-\frac {(c d f-a e g) \left (\frac {(f+g x)^{3/2} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 g \sqrt {d+e x}}-\frac {(c d f-a e g) \int \frac {\sqrt {d+e x} \sqrt {f+g x}}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{4 g}\right )}{2 g}\)

\(\Big \downarrow \) 1253

\(\displaystyle \frac {(f+g x)^{3/2} \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2}}-\frac {(c d f-a e g) \left (\frac {(f+g x)^{3/2} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 g \sqrt {d+e x}}-\frac {(c d f-a e g) \left (\frac {(c d f-a e g) \int \frac {\sqrt {d+e x}}{\sqrt {f+g x} \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{2 c d}+\frac {\sqrt {f+g x} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c d \sqrt {d+e x}}\right )}{4 g}\right )}{2 g}\)

\(\Big \downarrow \) 1268

\(\displaystyle \frac {(f+g x)^{3/2} \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2}}-\frac {(c d f-a e g) \left (\frac {(f+g x)^{3/2} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 g \sqrt {d+e x}}-\frac {(c d f-a e g) \left (\frac {\sqrt {d+e x} \sqrt {a e+c d x} (c d f-a e g) \int \frac {1}{\sqrt {a e+c d x} \sqrt {f+g x}}dx}{2 c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}+\frac {\sqrt {f+g x} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c d \sqrt {d+e x}}\right )}{4 g}\right )}{2 g}\)

\(\Big \downarrow \) 66

\(\displaystyle \frac {(f+g x)^{3/2} \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2}}-\frac {(c d f-a e g) \left (\frac {(f+g x)^{3/2} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 g \sqrt {d+e x}}-\frac {(c d f-a e g) \left (\frac {\sqrt {d+e x} \sqrt {a e+c d x} (c d f-a e g) \int \frac {1}{c d-\frac {g (a e+c d x)}{f+g x}}d\frac {\sqrt {a e+c d x}}{\sqrt {f+g x}}}{c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}+\frac {\sqrt {f+g x} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c d \sqrt {d+e x}}\right )}{4 g}\right )}{2 g}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {(f+g x)^{3/2} \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2}}-\frac {(c d f-a e g) \left (\frac {(f+g x)^{3/2} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 g \sqrt {d+e x}}-\frac {(c d f-a e g) \left (\frac {\sqrt {d+e x} \sqrt {a e+c d x} (c d f-a e g) \text {arctanh}\left (\frac {\sqrt {g} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {f+g x}}\right )}{c^{3/2} d^{3/2} \sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}+\frac {\sqrt {f+g x} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c d \sqrt {d+e x}}\right )}{4 g}\right )}{2 g}\)

Input:

Int[(Sqrt[f + g*x]*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(d + e*x 
)^(3/2),x]
 

Output:

((f + g*x)^(3/2)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(3*g*(d + 
e*x)^(3/2)) - ((c*d*f - a*e*g)*(((f + g*x)^(3/2)*Sqrt[a*d*e + (c*d^2 + a*e 
^2)*x + c*d*e*x^2])/(2*g*Sqrt[d + e*x]) - ((c*d*f - a*e*g)*((Sqrt[f + g*x] 
*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(c*d*Sqrt[d + e*x]) + ((c*d* 
f - a*e*g)*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*ArcTanh[(Sqrt[g]*Sqrt[a*e + c*d 
*x])/(Sqrt[c]*Sqrt[d]*Sqrt[f + g*x])])/(c^(3/2)*d^(3/2)*Sqrt[g]*Sqrt[a*d*e 
 + (c*d^2 + a*e^2)*x + c*d*e*x^2])))/(4*g)))/(2*g)
 

Defintions of rubi rules used

rule 66
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ 
2   Subst[Int[1/(b - d*x^2), x], x, Sqrt[a + b*x]/Sqrt[c + d*x]], x] /; Fre 
eQ[{a, b, c, d}, x] &&  !GtQ[c - a*(d/b), 0]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 1250
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
+ (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(d + e*x)^m)*(f + g*x)^(n + 1)*(( 
a + b*x + c*x^2)^p/(g*(m - n - 1))), x] - Simp[m*((c*e*f + c*d*g - b*e*g)/( 
e^2*g*(m - n - 1)))   Int[(d + e*x)^(m + 1)*(f + g*x)^n*(a + b*x + c*x^2)^( 
p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[c*d^2 - b*d*e + 
 a*e^2, 0] && EqQ[m + p, 0] && GtQ[p, 0] && NeQ[m - n - 1, 0] &&  !IGtQ[n, 
0] &&  !(IntegerQ[n + p] && LtQ[n + p + 2, 0]) && RationalQ[n]
 

rule 1253
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
+ (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-e)*(d + e*x)^(m - 1)*(f + g*x)^n* 
((a + b*x + c*x^2)^(p + 1)/(c*(m - n - 1))), x] - Simp[n*((c*e*f + c*d*g - 
b*e*g)/(c*e*(m - n - 1)))   Int[(d + e*x)^m*(f + g*x)^(n - 1)*(a + b*x + c* 
x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[c*d^2 - b*d* 
e + a*e^2, 0] && EqQ[m + p, 0] && GtQ[n, 0] && NeQ[m - n - 1, 0] && (Intege 
rQ[2*p] || IntegerQ[n])
 

rule 1268
Int[((d_) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_ 
) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(a + b*x + c*x^2)^FracPart[p]/((d 
 + e*x)^FracPart[p]*(a/d + (c*x)/e)^FracPart[p])   Int[(d + e*x)^(m + p)*(f 
 + g*x)^n*(a/d + (c/e)*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n}, x 
] && EqQ[c*d^2 - b*d*e + a*e^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(503\) vs. \(2(248)=496\).

Time = 2.63 (sec) , antiderivative size = 504, normalized size of antiderivative = 1.73

method result size
default \(-\frac {\sqrt {g x +f}\, \sqrt {\left (e x +d \right ) \left (c d x +a e \right )}\, \left (3 \ln \left (\frac {2 c d g x +a e g +d f c +2 \sqrt {\left (c d x +a e \right ) \left (g x +f \right )}\, \sqrt {c d g}}{2 \sqrt {c d g}}\right ) a^{3} e^{3} g^{3}-9 \ln \left (\frac {2 c d g x +a e g +d f c +2 \sqrt {\left (c d x +a e \right ) \left (g x +f \right )}\, \sqrt {c d g}}{2 \sqrt {c d g}}\right ) a^{2} c d \,e^{2} f \,g^{2}+9 \ln \left (\frac {2 c d g x +a e g +d f c +2 \sqrt {\left (c d x +a e \right ) \left (g x +f \right )}\, \sqrt {c d g}}{2 \sqrt {c d g}}\right ) a \,c^{2} d^{2} e \,f^{2} g -3 \ln \left (\frac {2 c d g x +a e g +d f c +2 \sqrt {\left (c d x +a e \right ) \left (g x +f \right )}\, \sqrt {c d g}}{2 \sqrt {c d g}}\right ) c^{3} d^{3} f^{3}-16 c^{2} d^{2} g^{2} x^{2} \sqrt {\left (c d x +a e \right ) \left (g x +f \right )}\, \sqrt {c d g}-28 \sqrt {\left (c d x +a e \right ) \left (g x +f \right )}\, \sqrt {c d g}\, a c d e \,g^{2} x -4 \sqrt {\left (c d x +a e \right ) \left (g x +f \right )}\, \sqrt {c d g}\, c^{2} d^{2} f g x -6 \sqrt {\left (c d x +a e \right ) \left (g x +f \right )}\, \sqrt {c d g}\, a^{2} e^{2} g^{2}-16 a c d e f g \sqrt {\left (c d x +a e \right ) \left (g x +f \right )}\, \sqrt {c d g}+6 \sqrt {\left (c d x +a e \right ) \left (g x +f \right )}\, \sqrt {c d g}\, c^{2} d^{2} f^{2}\right )}{48 \sqrt {e x +d}\, c d \sqrt {\left (c d x +a e \right ) \left (g x +f \right )}\, g^{2} \sqrt {c d g}}\) \(504\)

Input:

int((g*x+f)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(3/2)/(e*x+d)^(3/2),x, 
method=_RETURNVERBOSE)
 

Output:

-1/48*(g*x+f)^(1/2)*((e*x+d)*(c*d*x+a*e))^(1/2)*(3*ln(1/2*(2*c*d*g*x+a*e*g 
+d*f*c+2*((c*d*x+a*e)*(g*x+f))^(1/2)*(c*d*g)^(1/2))/(c*d*g)^(1/2))*a^3*e^3 
*g^3-9*ln(1/2*(2*c*d*g*x+a*e*g+d*f*c+2*((c*d*x+a*e)*(g*x+f))^(1/2)*(c*d*g) 
^(1/2))/(c*d*g)^(1/2))*a^2*c*d*e^2*f*g^2+9*ln(1/2*(2*c*d*g*x+a*e*g+d*f*c+2 
*((c*d*x+a*e)*(g*x+f))^(1/2)*(c*d*g)^(1/2))/(c*d*g)^(1/2))*a*c^2*d^2*e*f^2 
*g-3*ln(1/2*(2*c*d*g*x+a*e*g+d*f*c+2*((c*d*x+a*e)*(g*x+f))^(1/2)*(c*d*g)^( 
1/2))/(c*d*g)^(1/2))*c^3*d^3*f^3-16*c^2*d^2*g^2*x^2*((c*d*x+a*e)*(g*x+f))^ 
(1/2)*(c*d*g)^(1/2)-28*((c*d*x+a*e)*(g*x+f))^(1/2)*(c*d*g)^(1/2)*a*c*d*e*g 
^2*x-4*((c*d*x+a*e)*(g*x+f))^(1/2)*(c*d*g)^(1/2)*c^2*d^2*f*g*x-6*((c*d*x+a 
*e)*(g*x+f))^(1/2)*(c*d*g)^(1/2)*a^2*e^2*g^2-16*a*c*d*e*f*g*((c*d*x+a*e)*( 
g*x+f))^(1/2)*(c*d*g)^(1/2)+6*((c*d*x+a*e)*(g*x+f))^(1/2)*(c*d*g)^(1/2)*c^ 
2*d^2*f^2)/(e*x+d)^(1/2)/c/d/((c*d*x+a*e)*(g*x+f))^(1/2)/g^2/(c*d*g)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.79 (sec) , antiderivative size = 908, normalized size of antiderivative = 3.11 \[ \int \frac {\sqrt {f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx =\text {Too large to display} \] Input:

integrate((g*x+f)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3 
/2),x, algorithm="fricas")
 

Output:

[1/96*(4*(8*c^3*d^3*g^3*x^2 - 3*c^3*d^3*f^2*g + 8*a*c^2*d^2*e*f*g^2 + 3*a^ 
2*c*d*e^2*g^3 + 2*(c^3*d^3*f*g^2 + 7*a*c^2*d^2*e*g^3)*x)*sqrt(c*d*e*x^2 + 
a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)*sqrt(g*x + f) - 3*(c^3*d^4*f^3 - 
3*a*c^2*d^3*e*f^2*g + 3*a^2*c*d^2*e^2*f*g^2 - a^3*d*e^3*g^3 + (c^3*d^3*e*f 
^3 - 3*a*c^2*d^2*e^2*f^2*g + 3*a^2*c*d*e^3*f*g^2 - a^3*e^4*g^3)*x)*sqrt(c* 
d*g)*log(-(8*c^2*d^2*e*g^2*x^3 + c^2*d^3*f^2 + 6*a*c*d^2*e*f*g + a^2*d*e^2 
*g^2 - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*g*x + c*d*f + 
a*e*g)*sqrt(c*d*g)*sqrt(e*x + d)*sqrt(g*x + f) + 8*(c^2*d^2*e*f*g + (c^2*d 
^3 + a*c*d*e^2)*g^2)*x^2 + (c^2*d^2*e*f^2 + 2*(4*c^2*d^3 + 3*a*c*d*e^2)*f* 
g + (8*a*c*d^2*e + a^2*e^3)*g^2)*x)/(e*x + d)))/(c^2*d^2*e*g^3*x + c^2*d^3 
*g^3), 1/48*(2*(8*c^3*d^3*g^3*x^2 - 3*c^3*d^3*f^2*g + 8*a*c^2*d^2*e*f*g^2 
+ 3*a^2*c*d*e^2*g^3 + 2*(c^3*d^3*f*g^2 + 7*a*c^2*d^2*e*g^3)*x)*sqrt(c*d*e* 
x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)*sqrt(g*x + f) - 3*(c^3*d^4* 
f^3 - 3*a*c^2*d^3*e*f^2*g + 3*a^2*c*d^2*e^2*f*g^2 - a^3*d*e^3*g^3 + (c^3*d 
^3*e*f^3 - 3*a*c^2*d^2*e^2*f^2*g + 3*a^2*c*d*e^3*f*g^2 - a^3*e^4*g^3)*x)*s 
qrt(-c*d*g)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d* 
g*x + c*d*f + a*e*g)*sqrt(-c*d*g)*sqrt(e*x + d)*sqrt(g*x + f)/(c^2*d^2*e*g 
^2*x^3 + a*c*d^2*e*f*g + (c^2*d^2*e*f*g + (c^2*d^3 + a*c*d*e^2)*g^2)*x^2 + 
 (a*c*d^2*e*g^2 + (c^2*d^3 + a*c*d*e^2)*f*g)*x)))/(c^2*d^2*e*g^3*x + c^2*d 
^3*g^3)]
                                                                                    
                                                                                    
 

Sympy [F]

\[ \int \frac {\sqrt {f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=\int \frac {\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}} \sqrt {f + g x}}{\left (d + e x\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((g*x+f)**(1/2)*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/(e*x+ 
d)**(3/2),x)
 

Output:

Integral(((d + e*x)*(a*e + c*d*x))**(3/2)*sqrt(f + g*x)/(d + e*x)**(3/2), 
x)
 

Maxima [F]

\[ \int \frac {\sqrt {f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=\int { \frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}} \sqrt {g x + f}}{{\left (e x + d\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((g*x+f)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3 
/2),x, algorithm="maxima")
 

Output:

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)*sqrt(g*x + f)/(e*x 
 + d)^(3/2), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2098 vs. \(2 (248) = 496\).

Time = 0.42 (sec) , antiderivative size = 2098, normalized size of antiderivative = 7.18 \[ \int \frac {\sqrt {f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=\text {Too large to display} \] Input:

integrate((g*x+f)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3 
/2),x, algorithm="giac")
 

Output:

1/24*(6*(4*((c*d*e^2*f*g - a*e^3*g^2)*log(abs(-sqrt(e^2*f + (e*x + d)*e*g 
- d*e*g)*sqrt(c*d*g) + sqrt(-c*d*e^2*f*g + a*e^3*g^2 + (e^2*f + (e*x + d)* 
e*g - d*e*g)*c*d*g)))/sqrt(c*d*g) + sqrt(-c*d*e^2*f*g + a*e^3*g^2 + (e^2*f 
 + (e*x + d)*e*g - d*e*g)*c*d*g)*sqrt(e^2*f + (e*x + d)*e*g - d*e*g))*e*f* 
abs(g)/g^2 - 4*((c*d*e^2*f*g - a*e^3*g^2)*log(abs(-sqrt(e^2*f + (e*x + d)* 
e*g - d*e*g)*sqrt(c*d*g) + sqrt(-c*d*e^2*f*g + a*e^3*g^2 + (e^2*f + (e*x + 
 d)*e*g - d*e*g)*c*d*g)))/sqrt(c*d*g) + sqrt(-c*d*e^2*f*g + a*e^3*g^2 + (e 
^2*f + (e*x + d)*e*g - d*e*g)*c*d*g)*sqrt(e^2*f + (e*x + d)*e*g - d*e*g))* 
d*abs(g)/g + (sqrt(-c*d*e^2*f*g + a*e^3*g^2 + (e^2*f + (e*x + d)*e*g - d*e 
*g)*c*d*g)*(2*e^2*f + 2*(e*x + d)*e*g - 2*d*e*g - (5*c^2*d^2*e^2*f - 4*c^2 
*d^3*e*g - a*c*d*e^3*g)/(c^2*d^2))*sqrt(e^2*f + (e*x + d)*e*g - d*e*g) - ( 
3*c^2*d^2*e^4*f^2*g - 4*c^2*d^3*e^3*f*g^2 - 2*a*c*d*e^5*f*g^2 + 4*a*c*d^2* 
e^4*g^3 - a^2*e^6*g^3)*log(abs(-sqrt(e^2*f + (e*x + d)*e*g - d*e*g)*sqrt(c 
*d*g) + sqrt(-c*d*e^2*f*g + a*e^3*g^2 + (e^2*f + (e*x + d)*e*g - d*e*g)*c* 
d*g)))/(sqrt(c*d*g)*c*d))*abs(g)/(e*g^2))*a*abs(e)^2/(e^3*g) - (24*((c*d*e 
^2*f*g - a*e^3*g^2)*log(abs(-sqrt(e^2*f + (e*x + d)*e*g - d*e*g)*sqrt(c*d* 
g) + sqrt(-c*d*e^2*f*g + a*e^3*g^2 + (e^2*f + (e*x + d)*e*g - d*e*g)*c*d*g 
)))/sqrt(c*d*g) + sqrt(-c*d*e^2*f*g + a*e^3*g^2 + (e^2*f + (e*x + d)*e*g - 
 d*e*g)*c*d*g)*sqrt(e^2*f + (e*x + d)*e*g - d*e*g))*d*e*f*abs(g)/g^2 - 24* 
((c*d*e^2*f*g - a*e^3*g^2)*log(abs(-sqrt(e^2*f + (e*x + d)*e*g - d*e*g)...
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=\int \frac {\sqrt {f+g\,x}\,{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}}{{\left (d+e\,x\right )}^{3/2}} \,d x \] Input:

int(((f + g*x)^(1/2)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2))/(d + e 
*x)^(3/2),x)
 

Output:

int(((f + g*x)^(1/2)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2))/(d + e 
*x)^(3/2), x)
 

Reduce [B] (verification not implemented)

Time = 0.40 (sec) , antiderivative size = 412, normalized size of antiderivative = 1.41 \[ \int \frac {\sqrt {f+g x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=\frac {3 \sqrt {g x +f}\, \sqrt {c d x +a e}\, a^{2} c d \,e^{2} g^{3}+8 \sqrt {g x +f}\, \sqrt {c d x +a e}\, a \,c^{2} d^{2} e f \,g^{2}+14 \sqrt {g x +f}\, \sqrt {c d x +a e}\, a \,c^{2} d^{2} e \,g^{3} x -3 \sqrt {g x +f}\, \sqrt {c d x +a e}\, c^{3} d^{3} f^{2} g +2 \sqrt {g x +f}\, \sqrt {c d x +a e}\, c^{3} d^{3} f \,g^{2} x +8 \sqrt {g x +f}\, \sqrt {c d x +a e}\, c^{3} d^{3} g^{3} x^{2}-3 \sqrt {g}\, \sqrt {d}\, \sqrt {c}\, \mathrm {log}\left (\frac {\sqrt {g}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {g x +f}}{\sqrt {a e g -c d f}}\right ) a^{3} e^{3} g^{3}+9 \sqrt {g}\, \sqrt {d}\, \sqrt {c}\, \mathrm {log}\left (\frac {\sqrt {g}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {g x +f}}{\sqrt {a e g -c d f}}\right ) a^{2} c d \,e^{2} f \,g^{2}-9 \sqrt {g}\, \sqrt {d}\, \sqrt {c}\, \mathrm {log}\left (\frac {\sqrt {g}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {g x +f}}{\sqrt {a e g -c d f}}\right ) a \,c^{2} d^{2} e \,f^{2} g +3 \sqrt {g}\, \sqrt {d}\, \sqrt {c}\, \mathrm {log}\left (\frac {\sqrt {g}\, \sqrt {c d x +a e}+\sqrt {d}\, \sqrt {c}\, \sqrt {g x +f}}{\sqrt {a e g -c d f}}\right ) c^{3} d^{3} f^{3}}{24 c^{2} d^{2} g^{3}} \] Input:

int((g*x+f)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2),x)
 

Output:

(3*sqrt(f + g*x)*sqrt(a*e + c*d*x)*a**2*c*d*e**2*g**3 + 8*sqrt(f + g*x)*sq 
rt(a*e + c*d*x)*a*c**2*d**2*e*f*g**2 + 14*sqrt(f + g*x)*sqrt(a*e + c*d*x)* 
a*c**2*d**2*e*g**3*x - 3*sqrt(f + g*x)*sqrt(a*e + c*d*x)*c**3*d**3*f**2*g 
+ 2*sqrt(f + g*x)*sqrt(a*e + c*d*x)*c**3*d**3*f*g**2*x + 8*sqrt(f + g*x)*s 
qrt(a*e + c*d*x)*c**3*d**3*g**3*x**2 - 3*sqrt(g)*sqrt(d)*sqrt(c)*log((sqrt 
(g)*sqrt(a*e + c*d*x) + sqrt(d)*sqrt(c)*sqrt(f + g*x))/sqrt(a*e*g - c*d*f) 
)*a**3*e**3*g**3 + 9*sqrt(g)*sqrt(d)*sqrt(c)*log((sqrt(g)*sqrt(a*e + c*d*x 
) + sqrt(d)*sqrt(c)*sqrt(f + g*x))/sqrt(a*e*g - c*d*f))*a**2*c*d*e**2*f*g* 
*2 - 9*sqrt(g)*sqrt(d)*sqrt(c)*log((sqrt(g)*sqrt(a*e + c*d*x) + sqrt(d)*sq 
rt(c)*sqrt(f + g*x))/sqrt(a*e*g - c*d*f))*a*c**2*d**2*e*f**2*g + 3*sqrt(g) 
*sqrt(d)*sqrt(c)*log((sqrt(g)*sqrt(a*e + c*d*x) + sqrt(d)*sqrt(c)*sqrt(f + 
 g*x))/sqrt(a*e*g - c*d*f))*c**3*d**3*f**3)/(24*c**2*d**2*g**3)