\(\int \frac {(2-5 x) \sqrt {x}}{(2+5 x+3 x^2)^{5/2}} \, dx\) [223]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 175 \[ \int \frac {(2-5 x) \sqrt {x}}{\left (2+5 x+3 x^2\right )^{5/2}} \, dx=-\frac {2 \sqrt {x} (30+37 x)}{3 \left (2+5 x+3 x^2\right )^{3/2}}-\frac {198 \sqrt {x} (2+3 x)}{\sqrt {2+5 x+3 x^2}}+\frac {2 \sqrt {x} (250+297 x)}{\sqrt {2+5 x+3 x^2}}+\frac {198 \sqrt {2} \sqrt {2+5 x+3 x^2} E\left (\arctan \left (\sqrt {x}\right )|-\frac {1}{2}\right )}{\sqrt {1+x} \sqrt {2+3 x}}-\frac {245 \sqrt {2} \sqrt {1+x} \sqrt {2+3 x} \operatorname {EllipticF}\left (\arctan \left (\sqrt {x}\right ),-\frac {1}{2}\right )}{\sqrt {2+5 x+3 x^2}} \] Output:

-2/3*x^(1/2)*(30+37*x)/(3*x^2+5*x+2)^(3/2)-198*x^(1/2)*(2+3*x)/(3*x^2+5*x+ 
2)^(1/2)+2*x^(1/2)*(250+297*x)/(3*x^2+5*x+2)^(1/2)+198*2^(1/2)*(3*x^2+5*x+ 
2)^(1/2)*EllipticE(x^(1/2)/(1+x)^(1/2),1/2*I*2^(1/2))/(1+x)^(1/2)/(2+3*x)^ 
(1/2)-245*2^(1/2)*(1+x)^(1/2)*(2+3*x)^(1/2)*InverseJacobiAM(arctan(x^(1/2) 
),1/2*I*2^(1/2))/(3*x^2+5*x+2)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 21.36 (sec) , antiderivative size = 165, normalized size of antiderivative = 0.94 \[ \int \frac {(2-5 x) \sqrt {x}}{\left (2+5 x+3 x^2\right )^{5/2}} \, dx=-\frac {2 \left (1188+4470 x+5494 x^2+2205 x^3\right )}{3 \sqrt {x} \left (2+5 x+3 x^2\right )^{3/2}}-\frac {198 i \sqrt {2+\frac {2}{x}} \sqrt {3+\frac {2}{x}} x E\left (i \text {arcsinh}\left (\frac {\sqrt {\frac {2}{3}}}{\sqrt {x}}\right )|\frac {3}{2}\right )}{\sqrt {2+5 x+3 x^2}}-\frac {47 i \sqrt {2+\frac {2}{x}} \sqrt {3+\frac {2}{x}} x \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {\frac {2}{3}}}{\sqrt {x}}\right ),\frac {3}{2}\right )}{\sqrt {2+5 x+3 x^2}} \] Input:

Integrate[((2 - 5*x)*Sqrt[x])/(2 + 5*x + 3*x^2)^(5/2),x]
 

Output:

(-2*(1188 + 4470*x + 5494*x^2 + 2205*x^3))/(3*Sqrt[x]*(2 + 5*x + 3*x^2)^(3 
/2)) - ((198*I)*Sqrt[2 + 2/x]*Sqrt[3 + 2/x]*x*EllipticE[I*ArcSinh[Sqrt[2/3 
]/Sqrt[x]], 3/2])/Sqrt[2 + 5*x + 3*x^2] - ((47*I)*Sqrt[2 + 2/x]*Sqrt[3 + 2 
/x]*x*EllipticF[I*ArcSinh[Sqrt[2/3]/Sqrt[x]], 3/2])/Sqrt[2 + 5*x + 3*x^2]
 

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.08, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {1234, 27, 1235, 1240, 1503, 1413, 1456}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(2-5 x) \sqrt {x}}{\left (3 x^2+5 x+2\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 1234

\(\displaystyle -\frac {2}{3} \int -\frac {3 (10-37 x)}{2 \sqrt {x} \left (3 x^2+5 x+2\right )^{3/2}}dx-\frac {2 \sqrt {x} (37 x+30)}{3 \left (3 x^2+5 x+2\right )^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {10-37 x}{\sqrt {x} \left (3 x^2+5 x+2\right )^{3/2}}dx-\frac {2 \sqrt {x} (37 x+30)}{3 \left (3 x^2+5 x+2\right )^{3/2}}\)

\(\Big \downarrow \) 1235

\(\displaystyle -\int \frac {297 x+245}{\sqrt {x} \sqrt {3 x^2+5 x+2}}dx-\frac {2 \sqrt {x} (37 x+30)}{3 \left (3 x^2+5 x+2\right )^{3/2}}+\frac {2 \sqrt {x} (297 x+250)}{\sqrt {3 x^2+5 x+2}}\)

\(\Big \downarrow \) 1240

\(\displaystyle -2 \int \frac {297 x+245}{\sqrt {3 x^2+5 x+2}}d\sqrt {x}-\frac {2 \sqrt {x} (37 x+30)}{3 \left (3 x^2+5 x+2\right )^{3/2}}+\frac {2 \sqrt {x} (297 x+250)}{\sqrt {3 x^2+5 x+2}}\)

\(\Big \downarrow \) 1503

\(\displaystyle -2 \left (245 \int \frac {1}{\sqrt {3 x^2+5 x+2}}d\sqrt {x}+297 \int \frac {x}{\sqrt {3 x^2+5 x+2}}d\sqrt {x}\right )-\frac {2 \sqrt {x} (37 x+30)}{3 \left (3 x^2+5 x+2\right )^{3/2}}+\frac {2 \sqrt {x} (297 x+250)}{\sqrt {3 x^2+5 x+2}}\)

\(\Big \downarrow \) 1413

\(\displaystyle -2 \left (297 \int \frac {x}{\sqrt {3 x^2+5 x+2}}d\sqrt {x}+\frac {245 (x+1) \sqrt {\frac {3 x+2}{x+1}} \operatorname {EllipticF}\left (\arctan \left (\sqrt {x}\right ),-\frac {1}{2}\right )}{\sqrt {2} \sqrt {3 x^2+5 x+2}}\right )-\frac {2 \sqrt {x} (37 x+30)}{3 \left (3 x^2+5 x+2\right )^{3/2}}+\frac {2 \sqrt {x} (297 x+250)}{\sqrt {3 x^2+5 x+2}}\)

\(\Big \downarrow \) 1456

\(\displaystyle -2 \left (\frac {245 (x+1) \sqrt {\frac {3 x+2}{x+1}} \operatorname {EllipticF}\left (\arctan \left (\sqrt {x}\right ),-\frac {1}{2}\right )}{\sqrt {2} \sqrt {3 x^2+5 x+2}}+297 \left (\frac {\sqrt {x} (3 x+2)}{3 \sqrt {3 x^2+5 x+2}}-\frac {\sqrt {2} (x+1) \sqrt {\frac {3 x+2}{x+1}} E\left (\arctan \left (\sqrt {x}\right )|-\frac {1}{2}\right )}{3 \sqrt {3 x^2+5 x+2}}\right )\right )-\frac {2 \sqrt {x} (37 x+30)}{3 \left (3 x^2+5 x+2\right )^{3/2}}+\frac {2 \sqrt {x} (297 x+250)}{\sqrt {3 x^2+5 x+2}}\)

Input:

Int[((2 - 5*x)*Sqrt[x])/(2 + 5*x + 3*x^2)^(5/2),x]
 

Output:

(-2*Sqrt[x]*(30 + 37*x))/(3*(2 + 5*x + 3*x^2)^(3/2)) + (2*Sqrt[x]*(250 + 2 
97*x))/Sqrt[2 + 5*x + 3*x^2] - 2*(297*((Sqrt[x]*(2 + 3*x))/(3*Sqrt[2 + 5*x 
 + 3*x^2]) - (Sqrt[2]*(1 + x)*Sqrt[(2 + 3*x)/(1 + x)]*EllipticE[ArcTan[Sqr 
t[x]], -1/2])/(3*Sqrt[2 + 5*x + 3*x^2])) + (245*(1 + x)*Sqrt[(2 + 3*x)/(1 
+ x)]*EllipticF[ArcTan[Sqrt[x]], -1/2])/(Sqrt[2]*Sqrt[2 + 5*x + 3*x^2]))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1234
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*( 
(f*b - 2*a*g + (2*c*f - b*g)*x)/((p + 1)*(b^2 - 4*a*c))), x] + Simp[1/((p + 
 1)*(b^2 - 4*a*c))   Int[(d + e*x)^(m - 1)*(a + b*x + c*x^2)^(p + 1)*Simp[g 
*(2*a*e*m + b*d*(2*p + 3)) - f*(b*e*m + 2*c*d*(2*p + 3)) - e*(2*c*f - b*g)* 
(m + 2*p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && LtQ[p, -1 
] && GtQ[m, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
 

rule 1235
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(f*(b*c*d - b^2*e + 2 
*a*c*e) - a*g*(2*c*d - b*e) + c*(f*(2*c*d - b*e) - g*(b*d - 2*a*e))*x)*((a 
+ b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))), x] 
 + Simp[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))   Int[(d + e*x)^m 
*(a + b*x + c*x^2)^(p + 1)*Simp[f*(b*c*d*e*(2*p - m + 2) + b^2*e^2*(p + m + 
 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - g*(a*e*(b*e - 2*c*d* 
m + b*e*m) - b*d*(3*c*d - b*e + 2*c*d*p - b*e*p)) + c*e*(g*(b*d - 2*a*e) - 
f*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, 
 m}, x] && LtQ[p, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p] 
)
 

rule 1240
Int[((f_) + (g_.)*(x_))/(Sqrt[x_]*Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2]), 
x_Symbol] :> Simp[2   Subst[Int[(f + g*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x, 
 Sqrt[x]], x] /; FreeQ[{a, b, c, f, g}, x]
 

rule 1413
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b 
^2 - 4*a*c, 2]}, Simp[(2*a + (b - q)*x^2)*(Sqrt[(2*a + (b + q)*x^2)/(2*a + 
(b - q)*x^2)]/(2*a*Rt[(b - q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]))*EllipticF 
[ArcTan[Rt[(b - q)/(2*a), 2]*x], -2*(q/(b - q))], x] /; PosQ[(b - q)/a]] /; 
 FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1456
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[b^2 - 4*a*c, 2]}, Simp[x*((b - q + 2*c*x^2)/(2*c*Sqrt[a + b*x^2 + c*x^4 
])), x] - Simp[Rt[(b - q)/(2*a), 2]*(2*a + (b - q)*x^2)*(Sqrt[(2*a + (b + q 
)*x^2)/(2*a + (b - q)*x^2)]/(2*c*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[ArcTan 
[Rt[(b - q)/(2*a), 2]*x], -2*(q/(b - q))], x] /; PosQ[(b - q)/a]] /; FreeQ[ 
{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1503
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[d   Int[1/Sqrt[a + b*x^2 + c*x^4] 
, x], x] + Simp[e   Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b + q) 
/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]
 
Maple [A] (verified)

Time = 1.01 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.22

method result size
elliptic \(\frac {\sqrt {\left (3 x^{2}+5 x +2\right ) x}\, \left (\frac {\left (-\frac {20}{9}-\frac {74 x}{27}\right ) \sqrt {3 x^{3}+5 x^{2}+2 x}}{\left (x^{2}+\frac {5}{3} x +\frac {2}{3}\right )^{2}}-\frac {2 x \left (-\frac {250}{3}-99 x \right ) \sqrt {3}}{\sqrt {x \left (x^{2}+\frac {5}{3} x +\frac {2}{3}\right )}}-\frac {245 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {-6 x}\, \operatorname {EllipticF}\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )}{3 \sqrt {3 x^{3}+5 x^{2}+2 x}}-\frac {99 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {-6 x}\, \left (\frac {\operatorname {EllipticE}\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )}{3}-\operatorname {EllipticF}\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )\right )}{\sqrt {3 x^{3}+5 x^{2}+2 x}}\right )}{\sqrt {x}\, \sqrt {3 x^{2}+5 x +2}}\) \(214\)
default \(\frac {\left (156 \operatorname {EllipticF}\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right ) \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {6}\, \sqrt {-x}\, x^{2}-297 \operatorname {EllipticE}\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right ) \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {6}\, \sqrt {-x}\, x^{2}+260 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {6}\, \sqrt {-x}\, \operatorname {EllipticF}\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right ) x -495 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {6}\, \sqrt {-x}\, \operatorname {EllipticE}\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right ) x +104 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {6}\, \sqrt {-x}\, \operatorname {EllipticF}\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )-198 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {6}\, \sqrt {-x}\, \operatorname {EllipticE}\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )+5346 x^{4}+13410 x^{3}+10990 x^{2}+2940 x \right ) \sqrt {3 x^{2}+5 x +2}}{3 \sqrt {x}\, \left (3 x +2\right )^{2} \left (x +1\right )^{2}}\) \(297\)

Input:

int((2-5*x)*x^(1/2)/(3*x^2+5*x+2)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

((3*x^2+5*x+2)*x)^(1/2)/x^(1/2)/(3*x^2+5*x+2)^(1/2)*((-20/9-74/27*x)*(3*x^ 
3+5*x^2+2*x)^(1/2)/(x^2+5/3*x+2/3)^2-2*x*(-250/3-99*x)*3^(1/2)/(x*(x^2+5/3 
*x+2/3))^(1/2)-245/3*(6*x+4)^(1/2)*(3+3*x)^(1/2)*(-6*x)^(1/2)/(3*x^3+5*x^2 
+2*x)^(1/2)*EllipticF(1/2*(6*x+4)^(1/2),I*2^(1/2))-99*(6*x+4)^(1/2)*(3+3*x 
)^(1/2)*(-6*x)^(1/2)/(3*x^3+5*x^2+2*x)^(1/2)*(1/3*EllipticE(1/2*(6*x+4)^(1 
/2),I*2^(1/2))-EllipticF(1/2*(6*x+4)^(1/2),I*2^(1/2))))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.70 \[ \int \frac {(2-5 x) \sqrt {x}}{\left (2+5 x+3 x^2\right )^{5/2}} \, dx=-\frac {2 \, {\left (80 \, \sqrt {3} {\left (9 \, x^{4} + 30 \, x^{3} + 37 \, x^{2} + 20 \, x + 4\right )} {\rm weierstrassPInverse}\left (\frac {28}{27}, \frac {80}{729}, x + \frac {5}{9}\right ) - 297 \, \sqrt {3} {\left (9 \, x^{4} + 30 \, x^{3} + 37 \, x^{2} + 20 \, x + 4\right )} {\rm weierstrassZeta}\left (\frac {28}{27}, \frac {80}{729}, {\rm weierstrassPInverse}\left (\frac {28}{27}, \frac {80}{729}, x + \frac {5}{9}\right )\right ) - {\left (2673 \, x^{3} + 6705 \, x^{2} + 5495 \, x + 1470\right )} \sqrt {3 \, x^{2} + 5 \, x + 2} \sqrt {x}\right )}}{3 \, {\left (9 \, x^{4} + 30 \, x^{3} + 37 \, x^{2} + 20 \, x + 4\right )}} \] Input:

integrate((2-5*x)*x^(1/2)/(3*x^2+5*x+2)^(5/2),x, algorithm="fricas")
 

Output:

-2/3*(80*sqrt(3)*(9*x^4 + 30*x^3 + 37*x^2 + 20*x + 4)*weierstrassPInverse( 
28/27, 80/729, x + 5/9) - 297*sqrt(3)*(9*x^4 + 30*x^3 + 37*x^2 + 20*x + 4) 
*weierstrassZeta(28/27, 80/729, weierstrassPInverse(28/27, 80/729, x + 5/9 
)) - (2673*x^3 + 6705*x^2 + 5495*x + 1470)*sqrt(3*x^2 + 5*x + 2)*sqrt(x))/ 
(9*x^4 + 30*x^3 + 37*x^2 + 20*x + 4)
 

Sympy [F]

\[ \int \frac {(2-5 x) \sqrt {x}}{\left (2+5 x+3 x^2\right )^{5/2}} \, dx=- \int \left (- \frac {2 \sqrt {x}}{9 x^{4} \sqrt {3 x^{2} + 5 x + 2} + 30 x^{3} \sqrt {3 x^{2} + 5 x + 2} + 37 x^{2} \sqrt {3 x^{2} + 5 x + 2} + 20 x \sqrt {3 x^{2} + 5 x + 2} + 4 \sqrt {3 x^{2} + 5 x + 2}}\right )\, dx - \int \frac {5 x^{\frac {3}{2}}}{9 x^{4} \sqrt {3 x^{2} + 5 x + 2} + 30 x^{3} \sqrt {3 x^{2} + 5 x + 2} + 37 x^{2} \sqrt {3 x^{2} + 5 x + 2} + 20 x \sqrt {3 x^{2} + 5 x + 2} + 4 \sqrt {3 x^{2} + 5 x + 2}}\, dx \] Input:

integrate((2-5*x)*x**(1/2)/(3*x**2+5*x+2)**(5/2),x)
 

Output:

-Integral(-2*sqrt(x)/(9*x**4*sqrt(3*x**2 + 5*x + 2) + 30*x**3*sqrt(3*x**2 
+ 5*x + 2) + 37*x**2*sqrt(3*x**2 + 5*x + 2) + 20*x*sqrt(3*x**2 + 5*x + 2) 
+ 4*sqrt(3*x**2 + 5*x + 2)), x) - Integral(5*x**(3/2)/(9*x**4*sqrt(3*x**2 
+ 5*x + 2) + 30*x**3*sqrt(3*x**2 + 5*x + 2) + 37*x**2*sqrt(3*x**2 + 5*x + 
2) + 20*x*sqrt(3*x**2 + 5*x + 2) + 4*sqrt(3*x**2 + 5*x + 2)), x)
 

Maxima [F]

\[ \int \frac {(2-5 x) \sqrt {x}}{\left (2+5 x+3 x^2\right )^{5/2}} \, dx=\int { -\frac {{\left (5 \, x - 2\right )} \sqrt {x}}{{\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((2-5*x)*x^(1/2)/(3*x^2+5*x+2)^(5/2),x, algorithm="maxima")
 

Output:

-integrate((5*x - 2)*sqrt(x)/(3*x^2 + 5*x + 2)^(5/2), x)
 

Giac [F]

\[ \int \frac {(2-5 x) \sqrt {x}}{\left (2+5 x+3 x^2\right )^{5/2}} \, dx=\int { -\frac {{\left (5 \, x - 2\right )} \sqrt {x}}{{\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((2-5*x)*x^(1/2)/(3*x^2+5*x+2)^(5/2),x, algorithm="giac")
 

Output:

integrate(-(5*x - 2)*sqrt(x)/(3*x^2 + 5*x + 2)^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(2-5 x) \sqrt {x}}{\left (2+5 x+3 x^2\right )^{5/2}} \, dx=-\int \frac {\sqrt {x}\,\left (5\,x-2\right )}{{\left (3\,x^2+5\,x+2\right )}^{5/2}} \,d x \] Input:

int(-(x^(1/2)*(5*x - 2))/(5*x + 3*x^2 + 2)^(5/2),x)
 

Output:

-int((x^(1/2)*(5*x - 2))/(5*x + 3*x^2 + 2)^(5/2), x)
 

Reduce [F]

\[ \int \frac {(2-5 x) \sqrt {x}}{\left (2+5 x+3 x^2\right )^{5/2}} \, dx=\frac {-2 \sqrt {x}\, \sqrt {3 x^{2}+5 x +2}+18 \left (\int \frac {\sqrt {3 x^{2}+5 x +2}}{27 \sqrt {x}\, x^{6}+135 \sqrt {x}\, x^{5}+279 \sqrt {x}\, x^{4}+305 \sqrt {x}\, x^{3}+186 \sqrt {x}\, x^{2}+60 \sqrt {x}\, x +8 \sqrt {x}}d x \right ) x^{4}+60 \left (\int \frac {\sqrt {3 x^{2}+5 x +2}}{27 \sqrt {x}\, x^{6}+135 \sqrt {x}\, x^{5}+279 \sqrt {x}\, x^{4}+305 \sqrt {x}\, x^{3}+186 \sqrt {x}\, x^{2}+60 \sqrt {x}\, x +8 \sqrt {x}}d x \right ) x^{3}+74 \left (\int \frac {\sqrt {3 x^{2}+5 x +2}}{27 \sqrt {x}\, x^{6}+135 \sqrt {x}\, x^{5}+279 \sqrt {x}\, x^{4}+305 \sqrt {x}\, x^{3}+186 \sqrt {x}\, x^{2}+60 \sqrt {x}\, x +8 \sqrt {x}}d x \right ) x^{2}+40 \left (\int \frac {\sqrt {3 x^{2}+5 x +2}}{27 \sqrt {x}\, x^{6}+135 \sqrt {x}\, x^{5}+279 \sqrt {x}\, x^{4}+305 \sqrt {x}\, x^{3}+186 \sqrt {x}\, x^{2}+60 \sqrt {x}\, x +8 \sqrt {x}}d x \right ) x +8 \left (\int \frac {\sqrt {3 x^{2}+5 x +2}}{27 \sqrt {x}\, x^{6}+135 \sqrt {x}\, x^{5}+279 \sqrt {x}\, x^{4}+305 \sqrt {x}\, x^{3}+186 \sqrt {x}\, x^{2}+60 \sqrt {x}\, x +8 \sqrt {x}}d x \right )-360 \left (\int \frac {\sqrt {x}\, \sqrt {3 x^{2}+5 x +2}\, x}{27 x^{6}+135 x^{5}+279 x^{4}+305 x^{3}+186 x^{2}+60 x +8}d x \right ) x^{4}-1200 \left (\int \frac {\sqrt {x}\, \sqrt {3 x^{2}+5 x +2}\, x}{27 x^{6}+135 x^{5}+279 x^{4}+305 x^{3}+186 x^{2}+60 x +8}d x \right ) x^{3}-1480 \left (\int \frac {\sqrt {x}\, \sqrt {3 x^{2}+5 x +2}\, x}{27 x^{6}+135 x^{5}+279 x^{4}+305 x^{3}+186 x^{2}+60 x +8}d x \right ) x^{2}-800 \left (\int \frac {\sqrt {x}\, \sqrt {3 x^{2}+5 x +2}\, x}{27 x^{6}+135 x^{5}+279 x^{4}+305 x^{3}+186 x^{2}+60 x +8}d x \right ) x -160 \left (\int \frac {\sqrt {x}\, \sqrt {3 x^{2}+5 x +2}\, x}{27 x^{6}+135 x^{5}+279 x^{4}+305 x^{3}+186 x^{2}+60 x +8}d x \right )}{45 x^{4}+150 x^{3}+185 x^{2}+100 x +20} \] Input:

int((2-5*x)*x^(1/2)/(3*x^2+5*x+2)^(5/2),x)
 

Output:

(2*( - sqrt(x)*sqrt(3*x**2 + 5*x + 2) + 9*int(sqrt(3*x**2 + 5*x + 2)/(27*s 
qrt(x)*x**6 + 135*sqrt(x)*x**5 + 279*sqrt(x)*x**4 + 305*sqrt(x)*x**3 + 186 
*sqrt(x)*x**2 + 60*sqrt(x)*x + 8*sqrt(x)),x)*x**4 + 30*int(sqrt(3*x**2 + 5 
*x + 2)/(27*sqrt(x)*x**6 + 135*sqrt(x)*x**5 + 279*sqrt(x)*x**4 + 305*sqrt( 
x)*x**3 + 186*sqrt(x)*x**2 + 60*sqrt(x)*x + 8*sqrt(x)),x)*x**3 + 37*int(sq 
rt(3*x**2 + 5*x + 2)/(27*sqrt(x)*x**6 + 135*sqrt(x)*x**5 + 279*sqrt(x)*x** 
4 + 305*sqrt(x)*x**3 + 186*sqrt(x)*x**2 + 60*sqrt(x)*x + 8*sqrt(x)),x)*x** 
2 + 20*int(sqrt(3*x**2 + 5*x + 2)/(27*sqrt(x)*x**6 + 135*sqrt(x)*x**5 + 27 
9*sqrt(x)*x**4 + 305*sqrt(x)*x**3 + 186*sqrt(x)*x**2 + 60*sqrt(x)*x + 8*sq 
rt(x)),x)*x + 4*int(sqrt(3*x**2 + 5*x + 2)/(27*sqrt(x)*x**6 + 135*sqrt(x)* 
x**5 + 279*sqrt(x)*x**4 + 305*sqrt(x)*x**3 + 186*sqrt(x)*x**2 + 60*sqrt(x) 
*x + 8*sqrt(x)),x) - 180*int((sqrt(x)*sqrt(3*x**2 + 5*x + 2)*x)/(27*x**6 + 
 135*x**5 + 279*x**4 + 305*x**3 + 186*x**2 + 60*x + 8),x)*x**4 - 600*int(( 
sqrt(x)*sqrt(3*x**2 + 5*x + 2)*x)/(27*x**6 + 135*x**5 + 279*x**4 + 305*x** 
3 + 186*x**2 + 60*x + 8),x)*x**3 - 740*int((sqrt(x)*sqrt(3*x**2 + 5*x + 2) 
*x)/(27*x**6 + 135*x**5 + 279*x**4 + 305*x**3 + 186*x**2 + 60*x + 8),x)*x* 
*2 - 400*int((sqrt(x)*sqrt(3*x**2 + 5*x + 2)*x)/(27*x**6 + 135*x**5 + 279* 
x**4 + 305*x**3 + 186*x**2 + 60*x + 8),x)*x - 80*int((sqrt(x)*sqrt(3*x**2 
+ 5*x + 2)*x)/(27*x**6 + 135*x**5 + 279*x**4 + 305*x**3 + 186*x**2 + 60*x 
+ 8),x)))/(5*(9*x**4 + 30*x**3 + 37*x**2 + 20*x + 4))