\(\int \frac {(A+B x) (a+b x+c x^2)^3}{x^{9/2}} \, dx\) [82]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 174 \[ \int \frac {(A+B x) \left (a+b x+c x^2\right )^3}{x^{9/2}} \, dx=-\frac {2 a^3 A}{7 x^{7/2}}-\frac {2 a^2 (3 A b+a B)}{5 x^{5/2}}-\frac {2 a \left (a b B+A \left (b^2+a c\right )\right )}{x^{3/2}}-\frac {2 \left (3 a B \left (b^2+a c\right )+A \left (b^3+6 a b c\right )\right )}{\sqrt {x}}+2 \left (b^3 B+3 A b^2 c+6 a b B c+3 a A c^2\right ) \sqrt {x}+2 c \left (b^2 B+A b c+a B c\right ) x^{3/2}+\frac {2}{5} c^2 (3 b B+A c) x^{5/2}+\frac {2}{7} B c^3 x^{7/2} \] Output:

-2/7*a^3*A/x^(7/2)-2/5*a^2*(3*A*b+B*a)/x^(5/2)-2*a*(a*b*B+A*(a*c+b^2))/x^( 
3/2)-2*(3*a*B*(a*c+b^2)+A*(6*a*b*c+b^3))/x^(1/2)+2*(3*A*a*c^2+3*A*b^2*c+6* 
B*a*b*c+B*b^3)*x^(1/2)+2*c*(A*b*c+B*a*c+B*b^2)*x^(3/2)+2/5*c^2*(A*c+3*B*b) 
*x^(5/2)+2/7*B*c^3*x^(7/2)
 

Mathematica [A] (verified)

Time = 0.29 (sec) , antiderivative size = 168, normalized size of antiderivative = 0.97 \[ \int \frac {(A+B x) \left (a+b x+c x^2\right )^3}{x^{9/2}} \, dx=\frac {2 \left (-a^3 (5 A+7 B x)-7 a^2 x (5 B x (b+3 c x)+A (3 b+5 c x))-35 a x^2 \left (A \left (b^2+6 b c x-3 c^2 x^2\right )-B x \left (-3 b^2+6 b c x+c^2 x^2\right )\right )+x^3 \left (7 A \left (-5 b^3+15 b^2 c x+5 b c^2 x^2+c^3 x^3\right )+B x \left (35 b^3+35 b^2 c x+21 b c^2 x^2+5 c^3 x^3\right )\right )\right )}{35 x^{7/2}} \] Input:

Integrate[((A + B*x)*(a + b*x + c*x^2)^3)/x^(9/2),x]
 

Output:

(2*(-(a^3*(5*A + 7*B*x)) - 7*a^2*x*(5*B*x*(b + 3*c*x) + A*(3*b + 5*c*x)) - 
 35*a*x^2*(A*(b^2 + 6*b*c*x - 3*c^2*x^2) - B*x*(-3*b^2 + 6*b*c*x + c^2*x^2 
)) + x^3*(7*A*(-5*b^3 + 15*b^2*c*x + 5*b*c^2*x^2 + c^3*x^3) + B*x*(35*b^3 
+ 35*b^2*c*x + 21*b*c^2*x^2 + 5*c^3*x^3))))/(35*x^(7/2))
 

Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {1195, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(A+B x) \left (a+b x+c x^2\right )^3}{x^{9/2}} \, dx\)

\(\Big \downarrow \) 1195

\(\displaystyle \int \left (\frac {a^3 A}{x^{9/2}}+\frac {a^2 (a B+3 A b)}{x^{7/2}}+\frac {3 a \left (A \left (a c+b^2\right )+a b B\right )}{x^{5/2}}+3 c \sqrt {x} \left (a B c+A b c+b^2 B\right )+\frac {3 a A c^2+6 a b B c+3 A b^2 c+b^3 B}{\sqrt {x}}+\frac {A \left (6 a b c+b^3\right )+3 a B \left (a c+b^2\right )}{x^{3/2}}+c^2 x^{3/2} (A c+3 b B)+B c^3 x^{5/2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 a^3 A}{7 x^{7/2}}-\frac {2 a^2 (a B+3 A b)}{5 x^{5/2}}+2 c x^{3/2} \left (a B c+A b c+b^2 B\right )-\frac {2 a \left (A \left (a c+b^2\right )+a b B\right )}{x^{3/2}}+2 \sqrt {x} \left (3 a A c^2+6 a b B c+3 A b^2 c+b^3 B\right )-\frac {2 \left (A \left (6 a b c+b^3\right )+3 a B \left (a c+b^2\right )\right )}{\sqrt {x}}+\frac {2}{5} c^2 x^{5/2} (A c+3 b B)+\frac {2}{7} B c^3 x^{7/2}\)

Input:

Int[((A + B*x)*(a + b*x + c*x^2)^3)/x^(9/2),x]
 

Output:

(-2*a^3*A)/(7*x^(7/2)) - (2*a^2*(3*A*b + a*B))/(5*x^(5/2)) - (2*a*(a*b*B + 
 A*(b^2 + a*c)))/x^(3/2) - (2*(3*a*B*(b^2 + a*c) + A*(b^3 + 6*a*b*c)))/Sqr 
t[x] + 2*(b^3*B + 3*A*b^2*c + 6*a*b*B*c + 3*a*A*c^2)*Sqrt[x] + 2*c*(b^2*B 
+ A*b*c + a*B*c)*x^(3/2) + (2*c^2*(3*b*B + A*c)*x^(5/2))/5 + (2*B*c^3*x^(7 
/2))/7
 

Defintions of rubi rules used

rule 1195
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x 
_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d + e*x)^m*(f + 
 g*x)^n*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n}, x 
] && IGtQ[p, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [A] (verified)

Time = 1.04 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.00

method result size
derivativedivides \(\frac {2 B \,c^{3} x^{\frac {7}{2}}}{7}+\frac {2 A \,c^{3} x^{\frac {5}{2}}}{5}+\frac {6 B b \,c^{2} x^{\frac {5}{2}}}{5}+2 A b \,c^{2} x^{\frac {3}{2}}+2 B a \,c^{2} x^{\frac {3}{2}}+2 B \,b^{2} c \,x^{\frac {3}{2}}+6 A a \,c^{2} \sqrt {x}+6 A \,b^{2} c \sqrt {x}+12 B a b c \sqrt {x}+2 B \,b^{3} \sqrt {x}-\frac {2 a \left (A a c +b^{2} A +a b B \right )}{x^{\frac {3}{2}}}-\frac {2 a^{2} \left (3 A b +B a \right )}{5 x^{\frac {5}{2}}}-\frac {2 \left (6 A a b c +A \,b^{3}+3 B \,a^{2} c +3 B a \,b^{2}\right )}{\sqrt {x}}-\frac {2 a^{3} A}{7 x^{\frac {7}{2}}}\) \(174\)
default \(\frac {2 B \,c^{3} x^{\frac {7}{2}}}{7}+\frac {2 A \,c^{3} x^{\frac {5}{2}}}{5}+\frac {6 B b \,c^{2} x^{\frac {5}{2}}}{5}+2 A b \,c^{2} x^{\frac {3}{2}}+2 B a \,c^{2} x^{\frac {3}{2}}+2 B \,b^{2} c \,x^{\frac {3}{2}}+6 A a \,c^{2} \sqrt {x}+6 A \,b^{2} c \sqrt {x}+12 B a b c \sqrt {x}+2 B \,b^{3} \sqrt {x}-\frac {2 a \left (A a c +b^{2} A +a b B \right )}{x^{\frac {3}{2}}}-\frac {2 a^{2} \left (3 A b +B a \right )}{5 x^{\frac {5}{2}}}-\frac {2 \left (6 A a b c +A \,b^{3}+3 B \,a^{2} c +3 B a \,b^{2}\right )}{\sqrt {x}}-\frac {2 a^{3} A}{7 x^{\frac {7}{2}}}\) \(174\)
gosper \(-\frac {2 \left (-5 B \,c^{3} x^{7}-7 A \,c^{3} x^{6}-21 B b \,c^{2} x^{6}-35 A b \,c^{2} x^{5}-35 B a \,c^{2} x^{5}-35 B \,b^{2} c \,x^{5}-105 A a \,c^{2} x^{4}-105 A \,b^{2} c \,x^{4}-210 B a b c \,x^{4}-35 B \,b^{3} x^{4}+210 A a b c \,x^{3}+35 A \,b^{3} x^{3}+105 B \,a^{2} c \,x^{3}+105 B a \,b^{2} x^{3}+35 A \,a^{2} c \,x^{2}+35 A a \,b^{2} x^{2}+35 B \,a^{2} b \,x^{2}+21 A \,a^{2} b x +7 B \,a^{3} x +5 a^{3} A \right )}{35 x^{\frac {7}{2}}}\) \(192\)
trager \(-\frac {2 \left (-5 B \,c^{3} x^{7}-7 A \,c^{3} x^{6}-21 B b \,c^{2} x^{6}-35 A b \,c^{2} x^{5}-35 B a \,c^{2} x^{5}-35 B \,b^{2} c \,x^{5}-105 A a \,c^{2} x^{4}-105 A \,b^{2} c \,x^{4}-210 B a b c \,x^{4}-35 B \,b^{3} x^{4}+210 A a b c \,x^{3}+35 A \,b^{3} x^{3}+105 B \,a^{2} c \,x^{3}+105 B a \,b^{2} x^{3}+35 A \,a^{2} c \,x^{2}+35 A a \,b^{2} x^{2}+35 B \,a^{2} b \,x^{2}+21 A \,a^{2} b x +7 B \,a^{3} x +5 a^{3} A \right )}{35 x^{\frac {7}{2}}}\) \(192\)
risch \(-\frac {2 \left (-5 B \,c^{3} x^{7}-7 A \,c^{3} x^{6}-21 B b \,c^{2} x^{6}-35 A b \,c^{2} x^{5}-35 B a \,c^{2} x^{5}-35 B \,b^{2} c \,x^{5}-105 A a \,c^{2} x^{4}-105 A \,b^{2} c \,x^{4}-210 B a b c \,x^{4}-35 B \,b^{3} x^{4}+210 A a b c \,x^{3}+35 A \,b^{3} x^{3}+105 B \,a^{2} c \,x^{3}+105 B a \,b^{2} x^{3}+35 A \,a^{2} c \,x^{2}+35 A a \,b^{2} x^{2}+35 B \,a^{2} b \,x^{2}+21 A \,a^{2} b x +7 B \,a^{3} x +5 a^{3} A \right )}{35 x^{\frac {7}{2}}}\) \(192\)
orering \(-\frac {2 \left (-5 B \,c^{3} x^{7}-7 A \,c^{3} x^{6}-21 B b \,c^{2} x^{6}-35 A b \,c^{2} x^{5}-35 B a \,c^{2} x^{5}-35 B \,b^{2} c \,x^{5}-105 A a \,c^{2} x^{4}-105 A \,b^{2} c \,x^{4}-210 B a b c \,x^{4}-35 B \,b^{3} x^{4}+210 A a b c \,x^{3}+35 A \,b^{3} x^{3}+105 B \,a^{2} c \,x^{3}+105 B a \,b^{2} x^{3}+35 A \,a^{2} c \,x^{2}+35 A a \,b^{2} x^{2}+35 B \,a^{2} b \,x^{2}+21 A \,a^{2} b x +7 B \,a^{3} x +5 a^{3} A \right )}{35 x^{\frac {7}{2}}}\) \(192\)

Input:

int((B*x+A)*(c*x^2+b*x+a)^3/x^(9/2),x,method=_RETURNVERBOSE)
 

Output:

2/7*B*c^3*x^(7/2)+2/5*A*c^3*x^(5/2)+6/5*B*b*c^2*x^(5/2)+2*A*b*c^2*x^(3/2)+ 
2*B*a*c^2*x^(3/2)+2*B*b^2*c*x^(3/2)+6*A*a*c^2*x^(1/2)+6*A*b^2*c*x^(1/2)+12 
*B*a*b*c*x^(1/2)+2*B*b^3*x^(1/2)-2*a*(A*a*c+A*b^2+B*a*b)/x^(3/2)-2/5*a^2*( 
3*A*b+B*a)/x^(5/2)-2*(6*A*a*b*c+A*b^3+3*B*a^2*c+3*B*a*b^2)/x^(1/2)-2/7*a^3 
*A/x^(7/2)
 

Fricas [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 166, normalized size of antiderivative = 0.95 \[ \int \frac {(A+B x) \left (a+b x+c x^2\right )^3}{x^{9/2}} \, dx=\frac {2 \, {\left (5 \, B c^{3} x^{7} + 7 \, {\left (3 \, B b c^{2} + A c^{3}\right )} x^{6} + 35 \, {\left (B b^{2} c + {\left (B a + A b\right )} c^{2}\right )} x^{5} + 35 \, {\left (B b^{3} + 3 \, A a c^{2} + 3 \, {\left (2 \, B a b + A b^{2}\right )} c\right )} x^{4} - 5 \, A a^{3} - 35 \, {\left (3 \, B a b^{2} + A b^{3} + 3 \, {\left (B a^{2} + 2 \, A a b\right )} c\right )} x^{3} - 35 \, {\left (B a^{2} b + A a b^{2} + A a^{2} c\right )} x^{2} - 7 \, {\left (B a^{3} + 3 \, A a^{2} b\right )} x\right )}}{35 \, x^{\frac {7}{2}}} \] Input:

integrate((B*x+A)*(c*x^2+b*x+a)^3/x^(9/2),x, algorithm="fricas")
 

Output:

2/35*(5*B*c^3*x^7 + 7*(3*B*b*c^2 + A*c^3)*x^6 + 35*(B*b^2*c + (B*a + A*b)* 
c^2)*x^5 + 35*(B*b^3 + 3*A*a*c^2 + 3*(2*B*a*b + A*b^2)*c)*x^4 - 5*A*a^3 - 
35*(3*B*a*b^2 + A*b^3 + 3*(B*a^2 + 2*A*a*b)*c)*x^3 - 35*(B*a^2*b + A*a*b^2 
 + A*a^2*c)*x^2 - 7*(B*a^3 + 3*A*a^2*b)*x)/x^(7/2)
 

Sympy [A] (verification not implemented)

Time = 0.66 (sec) , antiderivative size = 270, normalized size of antiderivative = 1.55 \[ \int \frac {(A+B x) \left (a+b x+c x^2\right )^3}{x^{9/2}} \, dx=- \frac {2 A a^{3}}{7 x^{\frac {7}{2}}} - \frac {6 A a^{2} b}{5 x^{\frac {5}{2}}} - \frac {2 A a^{2} c}{x^{\frac {3}{2}}} - \frac {2 A a b^{2}}{x^{\frac {3}{2}}} - \frac {12 A a b c}{\sqrt {x}} + 6 A a c^{2} \sqrt {x} - \frac {2 A b^{3}}{\sqrt {x}} + 6 A b^{2} c \sqrt {x} + 2 A b c^{2} x^{\frac {3}{2}} + \frac {2 A c^{3} x^{\frac {5}{2}}}{5} - \frac {2 B a^{3}}{5 x^{\frac {5}{2}}} - \frac {2 B a^{2} b}{x^{\frac {3}{2}}} - \frac {6 B a^{2} c}{\sqrt {x}} - \frac {6 B a b^{2}}{\sqrt {x}} + 12 B a b c \sqrt {x} + 2 B a c^{2} x^{\frac {3}{2}} + 2 B b^{3} \sqrt {x} + 2 B b^{2} c x^{\frac {3}{2}} + \frac {6 B b c^{2} x^{\frac {5}{2}}}{5} + \frac {2 B c^{3} x^{\frac {7}{2}}}{7} \] Input:

integrate((B*x+A)*(c*x**2+b*x+a)**3/x**(9/2),x)
 

Output:

-2*A*a**3/(7*x**(7/2)) - 6*A*a**2*b/(5*x**(5/2)) - 2*A*a**2*c/x**(3/2) - 2 
*A*a*b**2/x**(3/2) - 12*A*a*b*c/sqrt(x) + 6*A*a*c**2*sqrt(x) - 2*A*b**3/sq 
rt(x) + 6*A*b**2*c*sqrt(x) + 2*A*b*c**2*x**(3/2) + 2*A*c**3*x**(5/2)/5 - 2 
*B*a**3/(5*x**(5/2)) - 2*B*a**2*b/x**(3/2) - 6*B*a**2*c/sqrt(x) - 6*B*a*b* 
*2/sqrt(x) + 12*B*a*b*c*sqrt(x) + 2*B*a*c**2*x**(3/2) + 2*B*b**3*sqrt(x) + 
 2*B*b**2*c*x**(3/2) + 6*B*b*c**2*x**(5/2)/5 + 2*B*c**3*x**(7/2)/7
 

Maxima [A] (verification not implemented)

Time = 0.03 (sec) , antiderivative size = 167, normalized size of antiderivative = 0.96 \[ \int \frac {(A+B x) \left (a+b x+c x^2\right )^3}{x^{9/2}} \, dx=\frac {2}{7} \, B c^{3} x^{\frac {7}{2}} + \frac {2}{5} \, {\left (3 \, B b c^{2} + A c^{3}\right )} x^{\frac {5}{2}} + 2 \, {\left (B b^{2} c + {\left (B a + A b\right )} c^{2}\right )} x^{\frac {3}{2}} + 2 \, {\left (B b^{3} + 3 \, A a c^{2} + 3 \, {\left (2 \, B a b + A b^{2}\right )} c\right )} \sqrt {x} - \frac {2 \, {\left (5 \, A a^{3} + 35 \, {\left (3 \, B a b^{2} + A b^{3} + 3 \, {\left (B a^{2} + 2 \, A a b\right )} c\right )} x^{3} + 35 \, {\left (B a^{2} b + A a b^{2} + A a^{2} c\right )} x^{2} + 7 \, {\left (B a^{3} + 3 \, A a^{2} b\right )} x\right )}}{35 \, x^{\frac {7}{2}}} \] Input:

integrate((B*x+A)*(c*x^2+b*x+a)^3/x^(9/2),x, algorithm="maxima")
 

Output:

2/7*B*c^3*x^(7/2) + 2/5*(3*B*b*c^2 + A*c^3)*x^(5/2) + 2*(B*b^2*c + (B*a + 
A*b)*c^2)*x^(3/2) + 2*(B*b^3 + 3*A*a*c^2 + 3*(2*B*a*b + A*b^2)*c)*sqrt(x) 
- 2/35*(5*A*a^3 + 35*(3*B*a*b^2 + A*b^3 + 3*(B*a^2 + 2*A*a*b)*c)*x^3 + 35* 
(B*a^2*b + A*a*b^2 + A*a^2*c)*x^2 + 7*(B*a^3 + 3*A*a^2*b)*x)/x^(7/2)
 

Giac [A] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 192, normalized size of antiderivative = 1.10 \[ \int \frac {(A+B x) \left (a+b x+c x^2\right )^3}{x^{9/2}} \, dx=\frac {2}{7} \, B c^{3} x^{\frac {7}{2}} + \frac {6}{5} \, B b c^{2} x^{\frac {5}{2}} + \frac {2}{5} \, A c^{3} x^{\frac {5}{2}} + 2 \, B b^{2} c x^{\frac {3}{2}} + 2 \, B a c^{2} x^{\frac {3}{2}} + 2 \, A b c^{2} x^{\frac {3}{2}} + 2 \, B b^{3} \sqrt {x} + 12 \, B a b c \sqrt {x} + 6 \, A b^{2} c \sqrt {x} + 6 \, A a c^{2} \sqrt {x} - \frac {2 \, {\left (105 \, B a b^{2} x^{3} + 35 \, A b^{3} x^{3} + 105 \, B a^{2} c x^{3} + 210 \, A a b c x^{3} + 35 \, B a^{2} b x^{2} + 35 \, A a b^{2} x^{2} + 35 \, A a^{2} c x^{2} + 7 \, B a^{3} x + 21 \, A a^{2} b x + 5 \, A a^{3}\right )}}{35 \, x^{\frac {7}{2}}} \] Input:

integrate((B*x+A)*(c*x^2+b*x+a)^3/x^(9/2),x, algorithm="giac")
                                                                                    
                                                                                    
 

Output:

2/7*B*c^3*x^(7/2) + 6/5*B*b*c^2*x^(5/2) + 2/5*A*c^3*x^(5/2) + 2*B*b^2*c*x^ 
(3/2) + 2*B*a*c^2*x^(3/2) + 2*A*b*c^2*x^(3/2) + 2*B*b^3*sqrt(x) + 12*B*a*b 
*c*sqrt(x) + 6*A*b^2*c*sqrt(x) + 6*A*a*c^2*sqrt(x) - 2/35*(105*B*a*b^2*x^3 
 + 35*A*b^3*x^3 + 105*B*a^2*c*x^3 + 210*A*a*b*c*x^3 + 35*B*a^2*b*x^2 + 35* 
A*a*b^2*x^2 + 35*A*a^2*c*x^2 + 7*B*a^3*x + 21*A*a^2*b*x + 5*A*a^3)/x^(7/2)
 

Mupad [B] (verification not implemented)

Time = 10.65 (sec) , antiderivative size = 170, normalized size of antiderivative = 0.98 \[ \int \frac {(A+B x) \left (a+b x+c x^2\right )^3}{x^{9/2}} \, dx=\sqrt {x}\,\left (2\,B\,b^3+6\,A\,b^2\,c+12\,B\,a\,b\,c+6\,A\,a\,c^2\right )-\frac {x^3\,\left (6\,B\,c\,a^2+6\,B\,a\,b^2+12\,A\,c\,a\,b+2\,A\,b^3\right )+x\,\left (\frac {2\,B\,a^3}{5}+\frac {6\,A\,b\,a^2}{5}\right )+\frac {2\,A\,a^3}{7}+x^2\,\left (2\,B\,a^2\,b+2\,A\,c\,a^2+2\,A\,a\,b^2\right )}{x^{7/2}}+x^{5/2}\,\left (\frac {2\,A\,c^3}{5}+\frac {6\,B\,b\,c^2}{5}\right )+x^{3/2}\,\left (2\,B\,b^2\,c+2\,A\,b\,c^2+2\,B\,a\,c^2\right )+\frac {2\,B\,c^3\,x^{7/2}}{7} \] Input:

int(((A + B*x)*(a + b*x + c*x^2)^3)/x^(9/2),x)
 

Output:

x^(1/2)*(2*B*b^3 + 6*A*a*c^2 + 6*A*b^2*c + 12*B*a*b*c) - (x^3*(2*A*b^3 + 6 
*B*a*b^2 + 6*B*a^2*c + 12*A*a*b*c) + x*((2*B*a^3)/5 + (6*A*a^2*b)/5) + (2* 
A*a^3)/7 + x^2*(2*A*a*b^2 + 2*A*a^2*c + 2*B*a^2*b))/x^(7/2) + x^(5/2)*((2* 
A*c^3)/5 + (6*B*b*c^2)/5) + x^(3/2)*(2*A*b*c^2 + 2*B*a*c^2 + 2*B*b^2*c) + 
(2*B*c^3*x^(7/2))/7
 

Reduce [B] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 138, normalized size of antiderivative = 0.79 \[ \int \frac {(A+B x) \left (a+b x+c x^2\right )^3}{x^{9/2}} \, dx=\frac {\frac {2}{7} b \,c^{3} x^{7}+\frac {2}{5} a \,c^{3} x^{6}+\frac {6}{5} b^{2} c^{2} x^{6}+4 a b \,c^{2} x^{5}+2 b^{3} c \,x^{5}+6 a^{2} c^{2} x^{4}+18 a \,b^{2} c \,x^{4}+2 b^{4} x^{4}-18 a^{2} b c \,x^{3}-8 a \,b^{3} x^{3}-2 a^{3} c \,x^{2}-4 a^{2} b^{2} x^{2}-\frac {8}{5} a^{3} b x -\frac {2}{7} a^{4}}{\sqrt {x}\, x^{3}} \] Input:

int((B*x+A)*(c*x^2+b*x+a)^3/x^(9/2),x)
 

Output:

(2*( - 5*a**4 - 28*a**3*b*x - 35*a**3*c*x**2 - 70*a**2*b**2*x**2 - 315*a** 
2*b*c*x**3 + 105*a**2*c**2*x**4 - 140*a*b**3*x**3 + 315*a*b**2*c*x**4 + 70 
*a*b*c**2*x**5 + 7*a*c**3*x**6 + 35*b**4*x**4 + 35*b**3*c*x**5 + 21*b**2*c 
**2*x**6 + 5*b*c**3*x**7))/(35*sqrt(x)*x**3)