\(\int \frac {x^2}{\sqrt {d+e x} \sqrt {a+b x+c x^2}} \, dx\) [96]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 426 \[ \int \frac {x^2}{\sqrt {d+e x} \sqrt {a+b x+c x^2}} \, dx=\frac {2 \sqrt {d+e x} \sqrt {a+b x+c x^2}}{3 c e}-\frac {2 \sqrt {2} \sqrt {b^2-4 a c} (c d+b e) \sqrt {d+e x} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\arcsin \left (\frac {\sqrt {1+\frac {b+2 c x}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )|-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{3 c^2 e^2 \sqrt {\frac {c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {a+b x+c x^2}}+\frac {2 \sqrt {2} \sqrt {b^2-4 a c} \left (2 c d^2+e (b d-a e)\right ) \sqrt {\frac {c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1+\frac {b+2 c x}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right ),-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{3 c^2 e^2 \sqrt {d+e x} \sqrt {a+b x+c x^2}} \] Output:

2/3*(e*x+d)^(1/2)*(c*x^2+b*x+a)^(1/2)/c/e-2/3*2^(1/2)*(-4*a*c+b^2)^(1/2)*( 
b*e+c*d)*(e*x+d)^(1/2)*(-c*(c*x^2+b*x+a)/(-4*a*c+b^2))^(1/2)*EllipticE(1/2 
*(1+(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),(-2*(-4*a*c+b^2)^(1/2)*e/( 
2*c*d-(b+(-4*a*c+b^2)^(1/2))*e))^(1/2))/c^2/e^2/(c*(e*x+d)/(2*c*d-(b+(-4*a 
*c+b^2)^(1/2))*e))^(1/2)/(c*x^2+b*x+a)^(1/2)+2/3*2^(1/2)*(-4*a*c+b^2)^(1/2 
)*(2*c*d^2+e*(-a*e+b*d))*(c*(e*x+d)/(2*c*d-(b+(-4*a*c+b^2)^(1/2))*e))^(1/2 
)*(-c*(c*x^2+b*x+a)/(-4*a*c+b^2))^(1/2)*EllipticF(1/2*(1+(2*c*x+b)/(-4*a*c 
+b^2)^(1/2))^(1/2)*2^(1/2),(-2*(-4*a*c+b^2)^(1/2)*e/(2*c*d-(b+(-4*a*c+b^2) 
^(1/2))*e))^(1/2))/c^2/e^2/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 31.03 (sec) , antiderivative size = 934, normalized size of antiderivative = 2.19 \[ \int \frac {x^2}{\sqrt {d+e x} \sqrt {a+b x+c x^2}} \, dx=\frac {\sqrt {d+e x} \left (2 c e^2 (a+x (b+c x))+\frac {(d+e x) \left (-\frac {4 e^2 (c d+b e) \sqrt {\frac {c d^2+e (-b d+a e)}{-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}}} (a+x (b+c x))}{(d+e x)^2}+\frac {i \sqrt {2} (c d+b e) \left (2 c d-b e+\sqrt {\left (b^2-4 a c\right ) e^2}\right ) \sqrt {\frac {-2 a e^2+d \sqrt {\left (b^2-4 a c\right ) e^2}+2 c d e x+e \sqrt {\left (b^2-4 a c\right ) e^2} x+b e (d-e x)}{\left (2 c d-b e+\sqrt {\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}} \sqrt {\frac {2 a e^2+d \sqrt {\left (b^2-4 a c\right ) e^2}-2 c d e x+e \sqrt {\left (b^2-4 a c\right ) e^2} x+b e (-d+e x)}{\left (-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}} E\left (i \text {arcsinh}\left (\frac {\sqrt {2} \sqrt {\frac {c d^2-b d e+a e^2}{-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}}}}{\sqrt {d+e x}}\right )|-\frac {-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}}{2 c d-b e+\sqrt {\left (b^2-4 a c\right ) e^2}}\right )}{\sqrt {d+e x}}+\frac {i \sqrt {2} \left (b^2 e^2-b e \sqrt {\left (b^2-4 a c\right ) e^2}-c \left (a e^2+d \sqrt {\left (b^2-4 a c\right ) e^2}\right )\right ) \sqrt {\frac {-2 a e^2+d \sqrt {\left (b^2-4 a c\right ) e^2}+2 c d e x+e \sqrt {\left (b^2-4 a c\right ) e^2} x+b e (d-e x)}{\left (2 c d-b e+\sqrt {\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}} \sqrt {\frac {2 a e^2+d \sqrt {\left (b^2-4 a c\right ) e^2}-2 c d e x+e \sqrt {\left (b^2-4 a c\right ) e^2} x+b e (-d+e x)}{\left (-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}\right ) (d+e x)}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {2} \sqrt {\frac {c d^2-b d e+a e^2}{-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}}}}{\sqrt {d+e x}}\right ),-\frac {-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}}{2 c d-b e+\sqrt {\left (b^2-4 a c\right ) e^2}}\right )}{\sqrt {d+e x}}\right )}{\sqrt {\frac {c d^2+e (-b d+a e)}{-2 c d+b e+\sqrt {\left (b^2-4 a c\right ) e^2}}}}\right )}{3 c^2 e^3 \sqrt {a+x (b+c x)}} \] Input:

Integrate[x^2/(Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2]),x]
 

Output:

(Sqrt[d + e*x]*(2*c*e^2*(a + x*(b + c*x)) + ((d + e*x)*((-4*e^2*(c*d + b*e 
)*Sqrt[(c*d^2 + e*(-(b*d) + a*e))/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2]) 
]*(a + x*(b + c*x)))/(d + e*x)^2 + (I*Sqrt[2]*(c*d + b*e)*(2*c*d - b*e + S 
qrt[(b^2 - 4*a*c)*e^2])*Sqrt[(-2*a*e^2 + d*Sqrt[(b^2 - 4*a*c)*e^2] + 2*c*d 
*e*x + e*Sqrt[(b^2 - 4*a*c)*e^2]*x + b*e*(d - e*x))/((2*c*d - b*e + Sqrt[( 
b^2 - 4*a*c)*e^2])*(d + e*x))]*Sqrt[(2*a*e^2 + d*Sqrt[(b^2 - 4*a*c)*e^2] - 
 2*c*d*e*x + e*Sqrt[(b^2 - 4*a*c)*e^2]*x + b*e*(-d + e*x))/((-2*c*d + b*e 
+ Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*EllipticE[I*ArcSinh[(Sqrt[2]*Sqrt[( 
c*d^2 - b*d*e + a*e^2)/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])])/Sqrt[d + 
 e*x]], -((-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])/(2*c*d - b*e + Sqrt[(b^ 
2 - 4*a*c)*e^2]))])/Sqrt[d + e*x] + (I*Sqrt[2]*(b^2*e^2 - b*e*Sqrt[(b^2 - 
4*a*c)*e^2] - c*(a*e^2 + d*Sqrt[(b^2 - 4*a*c)*e^2]))*Sqrt[(-2*a*e^2 + d*Sq 
rt[(b^2 - 4*a*c)*e^2] + 2*c*d*e*x + e*Sqrt[(b^2 - 4*a*c)*e^2]*x + b*e*(d - 
 e*x))/((2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*Sqrt[(2*a*e^2 
+ d*Sqrt[(b^2 - 4*a*c)*e^2] - 2*c*d*e*x + e*Sqrt[(b^2 - 4*a*c)*e^2]*x + b* 
e*(-d + e*x))/((-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*Ellipt 
icF[I*ArcSinh[(Sqrt[2]*Sqrt[(c*d^2 - b*d*e + a*e^2)/(-2*c*d + b*e + Sqrt[( 
b^2 - 4*a*c)*e^2])])/Sqrt[d + e*x]], -((-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)* 
e^2])/(2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2]))])/Sqrt[d + e*x]))/Sqrt[(c*d 
^2 + e*(-(b*d) + a*e))/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])]))/(3*c...
 

Rubi [A] (verified)

Time = 0.64 (sec) , antiderivative size = 453, normalized size of antiderivative = 1.06, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {1278, 9, 1269, 1172, 321, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{\sqrt {d+e x} \sqrt {a+b x+c x^2}} \, dx\)

\(\Big \downarrow \) 1278

\(\displaystyle \frac {2 \sqrt {d+e x} \sqrt {a+b x+c x^2}}{3 c e}-\frac {\int \frac {2 (c d+b e) x^2+(b d+a e) x}{x \sqrt {d+e x} \sqrt {c x^2+b x+a}}dx}{3 c e}\)

\(\Big \downarrow \) 9

\(\displaystyle \frac {2 \sqrt {d+e x} \sqrt {a+b x+c x^2}}{3 c e}-\frac {\int \frac {b d+a e+2 (c d+b e) x}{\sqrt {d+e x} \sqrt {c x^2+b x+a}}dx}{3 c e}\)

\(\Big \downarrow \) 1269

\(\displaystyle \frac {2 \sqrt {d+e x} \sqrt {a+b x+c x^2}}{3 c e}-\frac {\frac {2 (b e+c d) \int \frac {\sqrt {d+e x}}{\sqrt {c x^2+b x+a}}dx}{e}-\frac {\left (e (b d-a e)+2 c d^2\right ) \int \frac {1}{\sqrt {d+e x} \sqrt {c x^2+b x+a}}dx}{e}}{3 c e}\)

\(\Big \downarrow \) 1172

\(\displaystyle \frac {2 \sqrt {d+e x} \sqrt {a+b x+c x^2}}{3 c e}-\frac {\frac {2 \sqrt {2} \sqrt {b^2-4 a c} \sqrt {d+e x} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} (b e+c d) \int \frac {\sqrt {\frac {e \left (b+2 c x+\sqrt {b^2-4 a c}\right )}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}+1}}{\sqrt {1-\frac {b+2 c x+\sqrt {b^2-4 a c}}{2 \sqrt {b^2-4 a c}}}}d\frac {\sqrt {\frac {b+2 c x+\sqrt {b^2-4 a c}}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}}{c e \sqrt {a+b x+c x^2} \sqrt {\frac {c (d+e x)}{2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}}-\frac {2 \sqrt {2} \sqrt {b^2-4 a c} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \left (e (b d-a e)+2 c d^2\right ) \sqrt {\frac {c (d+e x)}{2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}} \int \frac {1}{\sqrt {1-\frac {b+2 c x+\sqrt {b^2-4 a c}}{2 \sqrt {b^2-4 a c}}} \sqrt {\frac {e \left (b+2 c x+\sqrt {b^2-4 a c}\right )}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}+1}}d\frac {\sqrt {\frac {b+2 c x+\sqrt {b^2-4 a c}}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}}{c e \sqrt {d+e x} \sqrt {a+b x+c x^2}}}{3 c e}\)

\(\Big \downarrow \) 321

\(\displaystyle \frac {2 \sqrt {d+e x} \sqrt {a+b x+c x^2}}{3 c e}-\frac {\frac {2 \sqrt {2} \sqrt {b^2-4 a c} \sqrt {d+e x} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} (b e+c d) \int \frac {\sqrt {\frac {e \left (b+2 c x+\sqrt {b^2-4 a c}\right )}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}+1}}{\sqrt {1-\frac {b+2 c x+\sqrt {b^2-4 a c}}{2 \sqrt {b^2-4 a c}}}}d\frac {\sqrt {\frac {b+2 c x+\sqrt {b^2-4 a c}}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}}{c e \sqrt {a+b x+c x^2} \sqrt {\frac {c (d+e x)}{2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}}-\frac {2 \sqrt {2} \sqrt {b^2-4 a c} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \left (e (b d-a e)+2 c d^2\right ) \sqrt {\frac {c (d+e x)}{2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {b+2 c x+\sqrt {b^2-4 a c}}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right ),-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{c e \sqrt {d+e x} \sqrt {a+b x+c x^2}}}{3 c e}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {2 \sqrt {d+e x} \sqrt {a+b x+c x^2}}{3 c e}-\frac {\frac {2 \sqrt {2} \sqrt {b^2-4 a c} \sqrt {d+e x} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} (b e+c d) E\left (\arcsin \left (\frac {\sqrt {\frac {b+2 c x+\sqrt {b^2-4 a c}}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )|-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{c e \sqrt {a+b x+c x^2} \sqrt {\frac {c (d+e x)}{2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}}-\frac {2 \sqrt {2} \sqrt {b^2-4 a c} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \left (e (b d-a e)+2 c d^2\right ) \sqrt {\frac {c (d+e x)}{2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {b+2 c x+\sqrt {b^2-4 a c}}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right ),-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{c e \sqrt {d+e x} \sqrt {a+b x+c x^2}}}{3 c e}\)

Input:

Int[x^2/(Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2]),x]
 

Output:

(2*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])/(3*c*e) - ((2*Sqrt[2]*Sqrt[b^2 - 4 
*a*c]*(c*d + b*e)*Sqrt[d + e*x]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c) 
)]*EllipticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c] 
]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]) 
/(c*e*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[a + b*x 
 + c*x^2]) - (2*Sqrt[2]*Sqrt[b^2 - 4*a*c]*(2*c*d^2 + e*(b*d - a*e))*Sqrt[( 
c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[-((c*(a + b*x + c*x 
^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x) 
/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*c*d - (b + Sqrt[ 
b^2 - 4*a*c])*e)])/(c*e*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2]))/(3*c*e)
 

Defintions of rubi rules used

rule 9
Int[(u_.)*(Px_)^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> With[{r = Expon[Px, 
x, Min]}, Simp[1/e^(p*r)   Int[u*(e*x)^(m + p*r)*ExpandToSum[Px/x^r, x]^p, 
x], x] /; IGtQ[r, 0]] /; FreeQ[{e, m}, x] && PolyQ[Px, x] && IntegerQ[p] && 
  !MonomialQ[Px, x]
 

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 1172
Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Sy 
mbol] :> Simp[2*Rt[b^2 - 4*a*c, 2]*(d + e*x)^m*(Sqrt[(-c)*((a + b*x + c*x^2 
)/(b^2 - 4*a*c))]/(c*Sqrt[a + b*x + c*x^2]*(2*c*((d + e*x)/(2*c*d - b*e - e 
*Rt[b^2 - 4*a*c, 2])))^m))   Subst[Int[(1 + 2*e*Rt[b^2 - 4*a*c, 2]*(x^2/(2* 
c*d - b*e - e*Rt[b^2 - 4*a*c, 2])))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^ 
2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b, c, d, e 
}, x] && EqQ[m^2, 1/4]
 

rule 1269
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[g/e   Int[(d + e*x)^(m + 1)*(a + b*x + 
 c*x^2)^p, x], x] + Simp[(e*f - d*g)/e   Int[(d + e*x)^m*(a + b*x + c*x^2)^ 
p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] &&  !IGtQ[m, 0]
 

rule 1278
Int[((d_.) + (e_.)*(x_))^(m_)/(Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_.) + (b_.)* 
(x_) + (c_.)*(x_)^2]), x_Symbol] :> Simp[2*e^2*(d + e*x)^(m - 2)*Sqrt[f + g 
*x]*(Sqrt[a + b*x + c*x^2]/(c*g*(2*m - 1))), x] - Simp[1/(c*g*(2*m - 1)) 
Int[((d + e*x)^(m - 3)/(Sqrt[f + g*x]*Sqrt[a + b*x + c*x^2]))*Simp[b*d*e^2* 
f + a*e^2*(d*g + 2*e*f*(m - 2)) - c*d^3*g*(2*m - 1) + e*(e*(2*b*d*g + e*(b* 
f + a*g)*(2*m - 3)) + c*d*(2*e*f - 3*d*g*(2*m - 1)))*x + 2*e^2*(c*e*f - 3*c 
*d*g + b*e*g)*(m - 1)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && 
 IntegerQ[2*m] && GeQ[m, 2]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(811\) vs. \(2(372)=744\).

Time = 4.34 (sec) , antiderivative size = 812, normalized size of antiderivative = 1.91

method result size
elliptic \(\frac {\sqrt {\left (e x +d \right ) \left (c \,x^{2}+b x +a \right )}\, \left (\frac {2 \sqrt {c e \,x^{3}+b e \,x^{2}+c d \,x^{2}+a e x +b d x +a d}}{3 e c}-\frac {4 \left (\frac {a e}{2}+\frac {b d}{2}\right ) \left (\frac {d}{e}-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right ) \sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \sqrt {\frac {x -\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {d}{e}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \sqrt {\frac {x +\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {d}{e}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {d}{e}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}}\right )}{3 e c \sqrt {c e \,x^{3}+b e \,x^{2}+c d \,x^{2}+a e x +b d x +a d}}-\frac {4 \left (b e +c d \right ) \left (\frac {d}{e}-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right ) \sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \sqrt {\frac {x -\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {d}{e}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \sqrt {\frac {x +\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {d}{e}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \left (\left (-\frac {d}{e}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}\right ) \operatorname {EllipticE}\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {d}{e}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}}\right )+\frac {\left (-b +\sqrt {-4 a c +b^{2}}\right ) \operatorname {EllipticF}\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {d}{e}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}}\right )}{2 c}\right )}{3 c e \sqrt {c e \,x^{3}+b e \,x^{2}+c d \,x^{2}+a e x +b d x +a d}}\right )}{\sqrt {e x +d}\, \sqrt {c \,x^{2}+b x +a}}\) \(812\)
risch \(\text {Expression too large to display}\) \(1075\)
default \(\text {Expression too large to display}\) \(2284\)

Input:

int(x^2/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

((e*x+d)*(c*x^2+b*x+a))^(1/2)/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2)*(2/3/e/c*( 
c*e*x^3+b*e*x^2+c*d*x^2+a*e*x+b*d*x+a*d)^(1/2)-4/3/e/c*(1/2*a*e+1/2*b*d)*( 
d/e-1/2*(b+(-4*a*c+b^2)^(1/2))/c)*((x+d/e)/(d/e-1/2*(b+(-4*a*c+b^2)^(1/2)) 
/c))^(1/2)*((x-1/2/c*(-b+(-4*a*c+b^2)^(1/2)))/(-d/e-1/2/c*(-b+(-4*a*c+b^2) 
^(1/2))))^(1/2)*((x+1/2*(b+(-4*a*c+b^2)^(1/2))/c)/(-d/e+1/2*(b+(-4*a*c+b^2 
)^(1/2))/c))^(1/2)/(c*e*x^3+b*e*x^2+c*d*x^2+a*e*x+b*d*x+a*d)^(1/2)*Ellipti 
cF(((x+d/e)/(d/e-1/2*(b+(-4*a*c+b^2)^(1/2))/c))^(1/2),((-d/e+1/2*(b+(-4*a* 
c+b^2)^(1/2))/c)/(-d/e-1/2/c*(-b+(-4*a*c+b^2)^(1/2))))^(1/2))-4/3*(b*e+c*d 
)/c/e*(d/e-1/2*(b+(-4*a*c+b^2)^(1/2))/c)*((x+d/e)/(d/e-1/2*(b+(-4*a*c+b^2) 
^(1/2))/c))^(1/2)*((x-1/2/c*(-b+(-4*a*c+b^2)^(1/2)))/(-d/e-1/2/c*(-b+(-4*a 
*c+b^2)^(1/2))))^(1/2)*((x+1/2*(b+(-4*a*c+b^2)^(1/2))/c)/(-d/e+1/2*(b+(-4* 
a*c+b^2)^(1/2))/c))^(1/2)/(c*e*x^3+b*e*x^2+c*d*x^2+a*e*x+b*d*x+a*d)^(1/2)* 
((-d/e-1/2/c*(-b+(-4*a*c+b^2)^(1/2)))*EllipticE(((x+d/e)/(d/e-1/2*(b+(-4*a 
*c+b^2)^(1/2))/c))^(1/2),((-d/e+1/2*(b+(-4*a*c+b^2)^(1/2))/c)/(-d/e-1/2/c* 
(-b+(-4*a*c+b^2)^(1/2))))^(1/2))+1/2/c*(-b+(-4*a*c+b^2)^(1/2))*EllipticF(( 
(x+d/e)/(d/e-1/2*(b+(-4*a*c+b^2)^(1/2))/c))^(1/2),((-d/e+1/2*(b+(-4*a*c+b^ 
2)^(1/2))/c)/(-d/e-1/2/c*(-b+(-4*a*c+b^2)^(1/2))))^(1/2))))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 415, normalized size of antiderivative = 0.97 \[ \int \frac {x^2}{\sqrt {d+e x} \sqrt {a+b x+c x^2}} \, dx=\frac {2 \, {\left (3 \, \sqrt {c x^{2} + b x + a} \sqrt {e x + d} c^{2} e^{2} + {\left (2 \, c^{2} d^{2} + b c d e + {\left (2 \, b^{2} - 3 \, a c\right )} e^{2}\right )} \sqrt {c e} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + {\left (b^{2} - 3 \, a c\right )} e^{2}\right )}}{3 \, c^{2} e^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, {\left (b^{2} c - 6 \, a c^{2}\right )} d e^{2} + {\left (2 \, b^{3} - 9 \, a b c\right )} e^{3}\right )}}{27 \, c^{3} e^{3}}, \frac {3 \, c e x + c d + b e}{3 \, c e}\right ) + 6 \, {\left (c^{2} d e + b c e^{2}\right )} \sqrt {c e} {\rm weierstrassZeta}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + {\left (b^{2} - 3 \, a c\right )} e^{2}\right )}}{3 \, c^{2} e^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, {\left (b^{2} c - 6 \, a c^{2}\right )} d e^{2} + {\left (2 \, b^{3} - 9 \, a b c\right )} e^{3}\right )}}{27 \, c^{3} e^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + {\left (b^{2} - 3 \, a c\right )} e^{2}\right )}}{3 \, c^{2} e^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, {\left (b^{2} c - 6 \, a c^{2}\right )} d e^{2} + {\left (2 \, b^{3} - 9 \, a b c\right )} e^{3}\right )}}{27 \, c^{3} e^{3}}, \frac {3 \, c e x + c d + b e}{3 \, c e}\right )\right )\right )}}{9 \, c^{3} e^{3}} \] Input:

integrate(x^2/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")
 

Output:

2/9*(3*sqrt(c*x^2 + b*x + a)*sqrt(e*x + d)*c^2*e^2 + (2*c^2*d^2 + b*c*d*e 
+ (2*b^2 - 3*a*c)*e^2)*sqrt(c*e)*weierstrassPInverse(4/3*(c^2*d^2 - b*c*d* 
e + (b^2 - 3*a*c)*e^2)/(c^2*e^2), -4/27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*(b^ 
2*c - 6*a*c^2)*d*e^2 + (2*b^3 - 9*a*b*c)*e^3)/(c^3*e^3), 1/3*(3*c*e*x + c* 
d + b*e)/(c*e)) + 6*(c^2*d*e + b*c*e^2)*sqrt(c*e)*weierstrassZeta(4/3*(c^2 
*d^2 - b*c*d*e + (b^2 - 3*a*c)*e^2)/(c^2*e^2), -4/27*(2*c^3*d^3 - 3*b*c^2* 
d^2*e - 3*(b^2*c - 6*a*c^2)*d*e^2 + (2*b^3 - 9*a*b*c)*e^3)/(c^3*e^3), weie 
rstrassPInverse(4/3*(c^2*d^2 - b*c*d*e + (b^2 - 3*a*c)*e^2)/(c^2*e^2), -4/ 
27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*(b^2*c - 6*a*c^2)*d*e^2 + (2*b^3 - 9*a*b 
*c)*e^3)/(c^3*e^3), 1/3*(3*c*e*x + c*d + b*e)/(c*e))))/(c^3*e^3)
 

Sympy [F]

\[ \int \frac {x^2}{\sqrt {d+e x} \sqrt {a+b x+c x^2}} \, dx=\int \frac {x^{2}}{\sqrt {d + e x} \sqrt {a + b x + c x^{2}}}\, dx \] Input:

integrate(x**2/(e*x+d)**(1/2)/(c*x**2+b*x+a)**(1/2),x)
 

Output:

Integral(x**2/(sqrt(d + e*x)*sqrt(a + b*x + c*x**2)), x)
 

Maxima [F]

\[ \int \frac {x^2}{\sqrt {d+e x} \sqrt {a+b x+c x^2}} \, dx=\int { \frac {x^{2}}{\sqrt {c x^{2} + b x + a} \sqrt {e x + d}} \,d x } \] Input:

integrate(x^2/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")
 

Output:

integrate(x^2/(sqrt(c*x^2 + b*x + a)*sqrt(e*x + d)), x)
 

Giac [F]

\[ \int \frac {x^2}{\sqrt {d+e x} \sqrt {a+b x+c x^2}} \, dx=\int { \frac {x^{2}}{\sqrt {c x^{2} + b x + a} \sqrt {e x + d}} \,d x } \] Input:

integrate(x^2/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")
 

Output:

integrate(x^2/(sqrt(c*x^2 + b*x + a)*sqrt(e*x + d)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\sqrt {d+e x} \sqrt {a+b x+c x^2}} \, dx=\int \frac {x^2}{\sqrt {d+e\,x}\,\sqrt {c\,x^2+b\,x+a}} \,d x \] Input:

int(x^2/((d + e*x)^(1/2)*(a + b*x + c*x^2)^(1/2)),x)
 

Output:

int(x^2/((d + e*x)^(1/2)*(a + b*x + c*x^2)^(1/2)), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \frac {x^2}{\sqrt {d+e x} \sqrt {a+b x+c x^2}} \, dx=\int \frac {x^{2}}{\sqrt {e x +d}\, \sqrt {c \,x^{2}+b x +a}}d x \] Input:

int(x^2/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2),x)
 

Output:

int(x^2/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2),x)