\(\int \frac {x^2}{\sqrt {7+x} \sqrt {3+2 x+5 x^2}} \, dx\) [111]

Optimal result
Mathematica [C] (verified)
Rubi [C] (warning: unable to verify)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 299 \[ \int \frac {x^2}{\sqrt {7+x} \sqrt {3+2 x+5 x^2}} \, dx=\frac {2}{15} \sqrt {7+x} \sqrt {3+2 x+5 x^2}-\frac {148 \sqrt {7+x} \sqrt {3+2 x+5 x^2}}{15 \left (3 \sqrt {130}+5 (7+x)\right )}+\frac {148 \sqrt [4]{26} \sqrt {\frac {3+2 x+5 x^2}{\left (78+\sqrt {130} (7+x)\right )^2}} \left (78+\sqrt {130} (7+x)\right ) E\left (2 \arctan \left (\frac {\sqrt [4]{\frac {5}{26}} \sqrt {7+x}}{\sqrt {3}}\right )|\frac {1}{390} \left (195+17 \sqrt {130}\right )\right )}{5 \sqrt {3} 5^{3/4} \sqrt {3+2 x+5 x^2}}+\frac {\left (167 \sqrt {5}-74 \sqrt {26}\right ) \sqrt {\frac {3+2 x+5 x^2}{\left (78+\sqrt {130} (7+x)\right )^2}} \left (78+\sqrt {130} (7+x)\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{\frac {5}{26}} \sqrt {7+x}}{\sqrt {3}}\right ),\frac {1}{390} \left (195+17 \sqrt {130}\right )\right )}{5 \sqrt {3} 5^{3/4} \sqrt [4]{26} \sqrt {3+2 x+5 x^2}} \] Output:

2/15*(7+x)^(1/2)*(5*x^2+2*x+3)^(1/2)-148*(7+x)^(1/2)*(5*x^2+2*x+3)^(1/2)/( 
45*130^(1/2)+525+75*x)+148/75*3^(1/2)*26^(1/4)*((5*x^2+2*x+3)/(78+130^(1/2 
)*(7+x))^2)^(1/2)*(78+130^(1/2)*(7+x))*EllipticE(sin(2*arctan(1/78*5^(1/4) 
*26^(3/4)*(7+x)^(1/2)*3^(1/2))),1/390*(76050+6630*130^(1/2))^(1/2))*5^(1/4 
)/(5*x^2+2*x+3)^(1/2)+1/1950*(167*5^(1/2)-74*26^(1/2))*((5*x^2+2*x+3)/(78+ 
130^(1/2)*(7+x))^2)^(1/2)*(78+130^(1/2)*(7+x))*InverseJacobiAM(2*arctan(1/ 
78*5^(1/4)*26^(3/4)*(7+x)^(1/2)*3^(1/2)),1/390*(76050+6630*130^(1/2))^(1/2 
))*3^(1/2)*5^(1/4)*26^(3/4)/(5*x^2+2*x+3)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 33.97 (sec) , antiderivative size = 420, normalized size of antiderivative = 1.40 \[ \int \frac {x^2}{\sqrt {7+x} \sqrt {3+2 x+5 x^2}} \, dx=\frac {2}{15} \sqrt {7+x} \sqrt {3+2 x+5 x^2}+\frac {(7+x)^{3/2} \left (-\frac {5772 \sqrt {-\frac {i}{34 i+\sqrt {14}}} \left (3+2 x+5 x^2\right )}{(7+x)^2}+\frac {148 i \sqrt {13} \left (17 \sqrt {2}+i \sqrt {7}\right ) \sqrt {\frac {34 i+\sqrt {14}-\frac {234 i}{7+x}}{34 i+\sqrt {14}}} \sqrt {\frac {-34 i+\sqrt {14}+\frac {234 i}{7+x}}{-34 i+\sqrt {14}}} E\left (i \text {arcsinh}\left (\frac {3 \sqrt {-\frac {26 i}{34 i+\sqrt {14}}}}{\sqrt {7+x}}\right )|\frac {34 i+\sqrt {14}}{34 i-\sqrt {14}}\right )}{\sqrt {7+x}}+\frac {\sqrt {13} \left (-11 i \sqrt {2}+148 \sqrt {7}\right ) \sqrt {\frac {34 i+\sqrt {14}-\frac {234 i}{7+x}}{34 i+\sqrt {14}}} \sqrt {\frac {-34 i+\sqrt {14}+\frac {234 i}{7+x}}{-34 i+\sqrt {14}}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {3 \sqrt {-\frac {26 i}{34 i+\sqrt {14}}}}{\sqrt {7+x}}\right ),\frac {34 i+\sqrt {14}}{34 i-\sqrt {14}}\right )}{\sqrt {7+x}}\right )}{2925 \sqrt {-\frac {i}{34 i+\sqrt {14}}} \sqrt {3+2 x+5 x^2}} \] Input:

Integrate[x^2/(Sqrt[7 + x]*Sqrt[3 + 2*x + 5*x^2]),x]
 

Output:

(2*Sqrt[7 + x]*Sqrt[3 + 2*x + 5*x^2])/15 + ((7 + x)^(3/2)*((-5772*Sqrt[(-I 
)/(34*I + Sqrt[14])]*(3 + 2*x + 5*x^2))/(7 + x)^2 + ((148*I)*Sqrt[13]*(17* 
Sqrt[2] + I*Sqrt[7])*Sqrt[(34*I + Sqrt[14] - (234*I)/(7 + x))/(34*I + Sqrt 
[14])]*Sqrt[(-34*I + Sqrt[14] + (234*I)/(7 + x))/(-34*I + Sqrt[14])]*Ellip 
ticE[I*ArcSinh[(3*Sqrt[(-26*I)/(34*I + Sqrt[14])])/Sqrt[7 + x]], (34*I + S 
qrt[14])/(34*I - Sqrt[14])])/Sqrt[7 + x] + (Sqrt[13]*((-11*I)*Sqrt[2] + 14 
8*Sqrt[7])*Sqrt[(34*I + Sqrt[14] - (234*I)/(7 + x))/(34*I + Sqrt[14])]*Sqr 
t[(-34*I + Sqrt[14] + (234*I)/(7 + x))/(-34*I + Sqrt[14])]*EllipticF[I*Arc 
Sinh[(3*Sqrt[(-26*I)/(34*I + Sqrt[14])])/Sqrt[7 + x]], (34*I + Sqrt[14])/( 
34*I - Sqrt[14])])/Sqrt[7 + x]))/(2925*Sqrt[(-I)/(34*I + Sqrt[14])]*Sqrt[3 
 + 2*x + 5*x^2])
 

Rubi [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 0.41 (sec) , antiderivative size = 203, normalized size of antiderivative = 0.68, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {1278, 9, 1269, 1172, 321, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{\sqrt {x+7} \sqrt {5 x^2+2 x+3}} \, dx\)

\(\Big \downarrow \) 1278

\(\displaystyle \frac {2}{15} \sqrt {x+7} \sqrt {5 x^2+2 x+3}-\frac {1}{15} \int \frac {74 x^2+17 x}{x \sqrt {x+7} \sqrt {5 x^2+2 x+3}}dx\)

\(\Big \downarrow \) 9

\(\displaystyle \frac {2}{15} \sqrt {x+7} \sqrt {5 x^2+2 x+3}-\frac {1}{15} \int \frac {74 x+17}{\sqrt {x+7} \sqrt {5 x^2+2 x+3}}dx\)

\(\Big \downarrow \) 1269

\(\displaystyle \frac {1}{15} \left (501 \int \frac {1}{\sqrt {x+7} \sqrt {5 x^2+2 x+3}}dx-74 \int \frac {\sqrt {x+7}}{\sqrt {5 x^2+2 x+3}}dx\right )+\frac {2}{15} \sqrt {x+7} \sqrt {5 x^2+2 x+3}\)

\(\Big \downarrow \) 1172

\(\displaystyle \frac {2}{15} \sqrt {x+7} \sqrt {5 x^2+2 x+3}+\frac {1}{15} \left (\frac {1002 i \sqrt {\frac {x+7}{34-i \sqrt {14}}} \int \frac {1}{\sqrt {\frac {i \left (5 x+i \sqrt {14}+1\right )}{2 \sqrt {14}}+1} \sqrt {\frac {i \left (5 x+i \sqrt {14}+1\right )}{34 i+\sqrt {14}}+1}}d\frac {\sqrt {-i \left (5 x+i \sqrt {14}+1\right )}}{2^{3/4} \sqrt [4]{7}}}{\sqrt {x+7}}-\frac {148 i \sqrt {x+7} \int \frac {\sqrt {\frac {i \left (5 x+i \sqrt {14}+1\right )}{34 i+\sqrt {14}}+1}}{\sqrt {\frac {i \left (5 x+i \sqrt {14}+1\right )}{2 \sqrt {14}}+1}}d\frac {\sqrt {-i \left (5 x+i \sqrt {14}+1\right )}}{2^{3/4} \sqrt [4]{7}}}{5 \sqrt {\frac {x+7}{34-i \sqrt {14}}}}\right )\)

\(\Big \downarrow \) 321

\(\displaystyle \frac {2}{15} \sqrt {x+7} \sqrt {5 x^2+2 x+3}+\frac {1}{15} \left (\frac {1002 i \sqrt {\frac {x+7}{34-i \sqrt {14}}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {-i \left (5 x+i \sqrt {14}+1\right )}}{2^{3/4} \sqrt [4]{7}}\right ),\frac {2 \sqrt {14}}{34 i+\sqrt {14}}\right )}{\sqrt {x+7}}-\frac {148 i \sqrt {x+7} \int \frac {\sqrt {\frac {i \left (5 x+i \sqrt {14}+1\right )}{34 i+\sqrt {14}}+1}}{\sqrt {\frac {i \left (5 x+i \sqrt {14}+1\right )}{2 \sqrt {14}}+1}}d\frac {\sqrt {-i \left (5 x+i \sqrt {14}+1\right )}}{2^{3/4} \sqrt [4]{7}}}{5 \sqrt {\frac {x+7}{34-i \sqrt {14}}}}\right )\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {2}{15} \sqrt {x+7} \sqrt {5 x^2+2 x+3}+\frac {1}{15} \left (\frac {1002 i \sqrt {\frac {x+7}{34-i \sqrt {14}}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {-i \left (5 x+i \sqrt {14}+1\right )}}{2^{3/4} \sqrt [4]{7}}\right ),\frac {2 \sqrt {14}}{34 i+\sqrt {14}}\right )}{\sqrt {x+7}}-\frac {148 i \sqrt {x+7} E\left (\arcsin \left (\frac {\sqrt {-i \left (5 x+i \sqrt {14}+1\right )}}{2^{3/4} \sqrt [4]{7}}\right )|\frac {2 \sqrt {14}}{34 i+\sqrt {14}}\right )}{5 \sqrt {\frac {x+7}{34-i \sqrt {14}}}}\right )\)

Input:

Int[x^2/(Sqrt[7 + x]*Sqrt[3 + 2*x + 5*x^2]),x]
 

Output:

(2*Sqrt[7 + x]*Sqrt[3 + 2*x + 5*x^2])/15 + ((((-148*I)/5)*Sqrt[7 + x]*Elli 
pticE[ArcSin[Sqrt[(-I)*(1 + I*Sqrt[14] + 5*x)]/(2^(3/4)*7^(1/4))], (2*Sqrt 
[14])/(34*I + Sqrt[14])])/Sqrt[(7 + x)/(34 - I*Sqrt[14])] + ((1002*I)*Sqrt 
[(7 + x)/(34 - I*Sqrt[14])]*EllipticF[ArcSin[Sqrt[(-I)*(1 + I*Sqrt[14] + 5 
*x)]/(2^(3/4)*7^(1/4))], (2*Sqrt[14])/(34*I + Sqrt[14])])/Sqrt[7 + x])/15
 

Defintions of rubi rules used

rule 9
Int[(u_.)*(Px_)^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> With[{r = Expon[Px, 
x, Min]}, Simp[1/e^(p*r)   Int[u*(e*x)^(m + p*r)*ExpandToSum[Px/x^r, x]^p, 
x], x] /; IGtQ[r, 0]] /; FreeQ[{e, m}, x] && PolyQ[Px, x] && IntegerQ[p] && 
  !MonomialQ[Px, x]
 

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 1172
Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Sy 
mbol] :> Simp[2*Rt[b^2 - 4*a*c, 2]*(d + e*x)^m*(Sqrt[(-c)*((a + b*x + c*x^2 
)/(b^2 - 4*a*c))]/(c*Sqrt[a + b*x + c*x^2]*(2*c*((d + e*x)/(2*c*d - b*e - e 
*Rt[b^2 - 4*a*c, 2])))^m))   Subst[Int[(1 + 2*e*Rt[b^2 - 4*a*c, 2]*(x^2/(2* 
c*d - b*e - e*Rt[b^2 - 4*a*c, 2])))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^ 
2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b, c, d, e 
}, x] && EqQ[m^2, 1/4]
 

rule 1269
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[g/e   Int[(d + e*x)^(m + 1)*(a + b*x + 
 c*x^2)^p, x], x] + Simp[(e*f - d*g)/e   Int[(d + e*x)^m*(a + b*x + c*x^2)^ 
p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] &&  !IGtQ[m, 0]
 

rule 1278
Int[((d_.) + (e_.)*(x_))^(m_)/(Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_.) + (b_.)* 
(x_) + (c_.)*(x_)^2]), x_Symbol] :> Simp[2*e^2*(d + e*x)^(m - 2)*Sqrt[f + g 
*x]*(Sqrt[a + b*x + c*x^2]/(c*g*(2*m - 1))), x] - Simp[1/(c*g*(2*m - 1)) 
Int[((d + e*x)^(m - 3)/(Sqrt[f + g*x]*Sqrt[a + b*x + c*x^2]))*Simp[b*d*e^2* 
f + a*e^2*(d*g + 2*e*f*(m - 2)) - c*d^3*g*(2*m - 1) + e*(e*(2*b*d*g + e*(b* 
f + a*g)*(2*m - 3)) + c*d*(2*e*f - 3*d*g*(2*m - 1)))*x + 2*e^2*(c*e*f - 3*c 
*d*g + b*e*g)*(m - 1)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && 
 IntegerQ[2*m] && GeQ[m, 2]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 2.56 (sec) , antiderivative size = 362, normalized size of antiderivative = 1.21

method result size
elliptic \(\frac {\sqrt {\left (x +7\right ) \left (5 x^{2}+2 x +3\right )}\, \left (\frac {2 \sqrt {5 x^{3}+37 x^{2}+17 x +21}}{15}-\frac {34 \left (\frac {34}{5}-\frac {i \sqrt {14}}{5}\right ) \sqrt {\frac {x +7}{\frac {34}{5}-\frac {i \sqrt {14}}{5}}}\, \sqrt {\frac {x +\frac {1}{5}-\frac {i \sqrt {14}}{5}}{-\frac {34}{5}-\frac {i \sqrt {14}}{5}}}\, \sqrt {\frac {x +\frac {1}{5}+\frac {i \sqrt {14}}{5}}{-\frac {34}{5}+\frac {i \sqrt {14}}{5}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x +7}{\frac {34}{5}-\frac {i \sqrt {14}}{5}}}, \sqrt {\frac {-\frac {34}{5}+\frac {i \sqrt {14}}{5}}{-\frac {34}{5}-\frac {i \sqrt {14}}{5}}}\right )}{15 \sqrt {5 x^{3}+37 x^{2}+17 x +21}}-\frac {148 \left (\frac {34}{5}-\frac {i \sqrt {14}}{5}\right ) \sqrt {\frac {x +7}{\frac {34}{5}-\frac {i \sqrt {14}}{5}}}\, \sqrt {\frac {x +\frac {1}{5}-\frac {i \sqrt {14}}{5}}{-\frac {34}{5}-\frac {i \sqrt {14}}{5}}}\, \sqrt {\frac {x +\frac {1}{5}+\frac {i \sqrt {14}}{5}}{-\frac {34}{5}+\frac {i \sqrt {14}}{5}}}\, \left (\left (-\frac {34}{5}-\frac {i \sqrt {14}}{5}\right ) \operatorname {EllipticE}\left (\sqrt {\frac {x +7}{\frac {34}{5}-\frac {i \sqrt {14}}{5}}}, \sqrt {\frac {-\frac {34}{5}+\frac {i \sqrt {14}}{5}}{-\frac {34}{5}-\frac {i \sqrt {14}}{5}}}\right )+\left (-\frac {1}{5}+\frac {i \sqrt {14}}{5}\right ) \operatorname {EllipticF}\left (\sqrt {\frac {x +7}{\frac {34}{5}-\frac {i \sqrt {14}}{5}}}, \sqrt {\frac {-\frac {34}{5}+\frac {i \sqrt {14}}{5}}{-\frac {34}{5}-\frac {i \sqrt {14}}{5}}}\right )\right )}{15 \sqrt {5 x^{3}+37 x^{2}+17 x +21}}\right )}{\sqrt {x +7}\, \sqrt {5 x^{2}+2 x +3}}\) \(362\)
risch \(\frac {2 \sqrt {x +7}\, \sqrt {5 x^{2}+2 x +3}}{15}+\frac {\left (-\frac {34 \left (\frac {34}{5}-\frac {i \sqrt {14}}{5}\right ) \sqrt {\frac {x +7}{\frac {34}{5}-\frac {i \sqrt {14}}{5}}}\, \sqrt {\frac {x +\frac {1}{5}-\frac {i \sqrt {14}}{5}}{-\frac {34}{5}-\frac {i \sqrt {14}}{5}}}\, \sqrt {\frac {x +\frac {1}{5}+\frac {i \sqrt {14}}{5}}{-\frac {34}{5}+\frac {i \sqrt {14}}{5}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x +7}{\frac {34}{5}-\frac {i \sqrt {14}}{5}}}, \sqrt {\frac {-\frac {34}{5}+\frac {i \sqrt {14}}{5}}{-\frac {34}{5}-\frac {i \sqrt {14}}{5}}}\right )}{15 \sqrt {5 x^{3}+37 x^{2}+17 x +21}}-\frac {148 \left (\frac {34}{5}-\frac {i \sqrt {14}}{5}\right ) \sqrt {\frac {x +7}{\frac {34}{5}-\frac {i \sqrt {14}}{5}}}\, \sqrt {\frac {x +\frac {1}{5}-\frac {i \sqrt {14}}{5}}{-\frac {34}{5}-\frac {i \sqrt {14}}{5}}}\, \sqrt {\frac {x +\frac {1}{5}+\frac {i \sqrt {14}}{5}}{-\frac {34}{5}+\frac {i \sqrt {14}}{5}}}\, \left (\left (-\frac {34}{5}-\frac {i \sqrt {14}}{5}\right ) \operatorname {EllipticE}\left (\sqrt {\frac {x +7}{\frac {34}{5}-\frac {i \sqrt {14}}{5}}}, \sqrt {\frac {-\frac {34}{5}+\frac {i \sqrt {14}}{5}}{-\frac {34}{5}-\frac {i \sqrt {14}}{5}}}\right )+\left (-\frac {1}{5}+\frac {i \sqrt {14}}{5}\right ) \operatorname {EllipticF}\left (\sqrt {\frac {x +7}{\frac {34}{5}-\frac {i \sqrt {14}}{5}}}, \sqrt {\frac {-\frac {34}{5}+\frac {i \sqrt {14}}{5}}{-\frac {34}{5}-\frac {i \sqrt {14}}{5}}}\right )\right )}{15 \sqrt {5 x^{3}+37 x^{2}+17 x +21}}\right ) \sqrt {\left (x +7\right ) \left (5 x^{2}+2 x +3\right )}}{\sqrt {x +7}\, \sqrt {5 x^{2}+2 x +3}}\) \(363\)
default \(-\frac {2 \sqrt {x +7}\, \sqrt {5 x^{2}+2 x +3}\, \left (501 i \sqrt {14}\, \sqrt {-\frac {5 \left (x +7\right )}{-34+i \sqrt {14}}}\, \sqrt {\frac {i \sqrt {14}-5 x -1}{i \sqrt {14}+34}}\, \sqrt {\frac {i \sqrt {14}+5 x +1}{-34+i \sqrt {14}}}\, \operatorname {EllipticF}\left (\sqrt {-\frac {5 \left (x +7\right )}{-34+i \sqrt {14}}}, \sqrt {-\frac {-34+i \sqrt {14}}{i \sqrt {14}+34}}\right )+282 \sqrt {-\frac {5 \left (x +7\right )}{-34+i \sqrt {14}}}\, \sqrt {\frac {i \sqrt {14}-5 x -1}{i \sqrt {14}+34}}\, \sqrt {\frac {i \sqrt {14}+5 x +1}{-34+i \sqrt {14}}}\, \operatorname {EllipticF}\left (\sqrt {-\frac {5 \left (x +7\right )}{-34+i \sqrt {14}}}, \sqrt {-\frac {-34+i \sqrt {14}}{i \sqrt {14}+34}}\right )-17316 \sqrt {-\frac {5 \left (x +7\right )}{-34+i \sqrt {14}}}\, \sqrt {\frac {i \sqrt {14}-5 x -1}{i \sqrt {14}+34}}\, \sqrt {\frac {i \sqrt {14}+5 x +1}{-34+i \sqrt {14}}}\, \operatorname {EllipticE}\left (\sqrt {-\frac {5 \left (x +7\right )}{-34+i \sqrt {14}}}, \sqrt {-\frac {-34+i \sqrt {14}}{i \sqrt {14}+34}}\right )-25 x^{3}-185 x^{2}-85 x -105\right )}{75 \left (5 x^{3}+37 x^{2}+17 x +21\right )}\) \(377\)

Input:

int(x^2/(x+7)^(1/2)/(5*x^2+2*x+3)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

((x+7)*(5*x^2+2*x+3))^(1/2)/(x+7)^(1/2)/(5*x^2+2*x+3)^(1/2)*(2/15*(5*x^3+3 
7*x^2+17*x+21)^(1/2)-34/15*(34/5-1/5*I*14^(1/2))*((x+7)/(34/5-1/5*I*14^(1/ 
2)))^(1/2)*((x+1/5-1/5*I*14^(1/2))/(-34/5-1/5*I*14^(1/2)))^(1/2)*((x+1/5+1 
/5*I*14^(1/2))/(-34/5+1/5*I*14^(1/2)))^(1/2)/(5*x^3+37*x^2+17*x+21)^(1/2)* 
EllipticF(((x+7)/(34/5-1/5*I*14^(1/2)))^(1/2),((-34/5+1/5*I*14^(1/2))/(-34 
/5-1/5*I*14^(1/2)))^(1/2))-148/15*(34/5-1/5*I*14^(1/2))*((x+7)/(34/5-1/5*I 
*14^(1/2)))^(1/2)*((x+1/5-1/5*I*14^(1/2))/(-34/5-1/5*I*14^(1/2)))^(1/2)*(( 
x+1/5+1/5*I*14^(1/2))/(-34/5+1/5*I*14^(1/2)))^(1/2)/(5*x^3+37*x^2+17*x+21) 
^(1/2)*((-34/5-1/5*I*14^(1/2))*EllipticE(((x+7)/(34/5-1/5*I*14^(1/2)))^(1/ 
2),((-34/5+1/5*I*14^(1/2))/(-34/5-1/5*I*14^(1/2)))^(1/2))+(-1/5+1/5*I*14^( 
1/2))*EllipticF(((x+7)/(34/5-1/5*I*14^(1/2)))^(1/2),((-34/5+1/5*I*14^(1/2) 
)/(-34/5-1/5*I*14^(1/2)))^(1/2))))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 45, normalized size of antiderivative = 0.15 \[ \int \frac {x^2}{\sqrt {7+x} \sqrt {3+2 x+5 x^2}} \, dx=\frac {4966}{1125} \, \sqrt {5} {\rm weierstrassPInverse}\left (\frac {4456}{75}, -\frac {348704}{3375}, x + \frac {37}{15}\right ) + \frac {148}{75} \, \sqrt {5} {\rm weierstrassZeta}\left (\frac {4456}{75}, -\frac {348704}{3375}, {\rm weierstrassPInverse}\left (\frac {4456}{75}, -\frac {348704}{3375}, x + \frac {37}{15}\right )\right ) + \frac {2}{15} \, \sqrt {5 \, x^{2} + 2 \, x + 3} \sqrt {x + 7} \] Input:

integrate(x^2/(7+x)^(1/2)/(5*x^2+2*x+3)^(1/2),x, algorithm="fricas")
 

Output:

4966/1125*sqrt(5)*weierstrassPInverse(4456/75, -348704/3375, x + 37/15) + 
148/75*sqrt(5)*weierstrassZeta(4456/75, -348704/3375, weierstrassPInverse( 
4456/75, -348704/3375, x + 37/15)) + 2/15*sqrt(5*x^2 + 2*x + 3)*sqrt(x + 7 
)
 

Sympy [F]

\[ \int \frac {x^2}{\sqrt {7+x} \sqrt {3+2 x+5 x^2}} \, dx=\int \frac {x^{2}}{\sqrt {x + 7} \sqrt {5 x^{2} + 2 x + 3}}\, dx \] Input:

integrate(x**2/(7+x)**(1/2)/(5*x**2+2*x+3)**(1/2),x)
 

Output:

Integral(x**2/(sqrt(x + 7)*sqrt(5*x**2 + 2*x + 3)), x)
 

Maxima [F]

\[ \int \frac {x^2}{\sqrt {7+x} \sqrt {3+2 x+5 x^2}} \, dx=\int { \frac {x^{2}}{\sqrt {5 \, x^{2} + 2 \, x + 3} \sqrt {x + 7}} \,d x } \] Input:

integrate(x^2/(7+x)^(1/2)/(5*x^2+2*x+3)^(1/2),x, algorithm="maxima")
 

Output:

integrate(x^2/(sqrt(5*x^2 + 2*x + 3)*sqrt(x + 7)), x)
 

Giac [F]

\[ \int \frac {x^2}{\sqrt {7+x} \sqrt {3+2 x+5 x^2}} \, dx=\int { \frac {x^{2}}{\sqrt {5 \, x^{2} + 2 \, x + 3} \sqrt {x + 7}} \,d x } \] Input:

integrate(x^2/(7+x)^(1/2)/(5*x^2+2*x+3)^(1/2),x, algorithm="giac")
 

Output:

integrate(x^2/(sqrt(5*x^2 + 2*x + 3)*sqrt(x + 7)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\sqrt {7+x} \sqrt {3+2 x+5 x^2}} \, dx=\int \frac {x^2}{\sqrt {x+7}\,\sqrt {5\,x^2+2\,x+3}} \,d x \] Input:

int(x^2/((x + 7)^(1/2)*(2*x + 5*x^2 + 3)^(1/2)),x)
 

Output:

int(x^2/((x + 7)^(1/2)*(2*x + 5*x^2 + 3)^(1/2)), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \frac {x^2}{\sqrt {7+x} \sqrt {3+2 x+5 x^2}} \, dx=\int \frac {\sqrt {x +7}\, \sqrt {5 x^{2}+2 x +3}\, x^{2}}{5 x^{3}+37 x^{2}+17 x +21}d x \] Input:

int(x^2/(7+x)^(1/2)/(5*x^2+2*x+3)^(1/2),x)
 

Output:

int((sqrt(x + 7)*sqrt(5*x**2 + 2*x + 3)*x**2)/(5*x**3 + 37*x**2 + 17*x + 2 
1),x)