\(\int x^m (1+x) (1+2 x+x^2)^5 \, dx\) [470]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 17, antiderivative size = 143 \[ \int x^m (1+x) \left (1+2 x+x^2\right )^5 \, dx=\frac {x^{1+m}}{1+m}+\frac {11 x^{2+m}}{2+m}+\frac {55 x^{3+m}}{3+m}+\frac {165 x^{4+m}}{4+m}+\frac {330 x^{5+m}}{5+m}+\frac {462 x^{6+m}}{6+m}+\frac {462 x^{7+m}}{7+m}+\frac {330 x^{8+m}}{8+m}+\frac {165 x^{9+m}}{9+m}+\frac {55 x^{10+m}}{10+m}+\frac {11 x^{11+m}}{11+m}+\frac {x^{12+m}}{12+m} \] Output:

x^(1+m)/(1+m)+11*x^(2+m)/(2+m)+55*x^(3+m)/(3+m)+165*x^(4+m)/(4+m)+330*x^(5 
+m)/(5+m)+462*x^(6+m)/(6+m)+462*x^(7+m)/(7+m)+330*x^(8+m)/(8+m)+165*x^(9+m 
)/(9+m)+55*x^(10+m)/(10+m)+11*x^(11+m)/(11+m)+x^(12+m)/(12+m)
 

Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 119, normalized size of antiderivative = 0.83 \[ \int x^m (1+x) \left (1+2 x+x^2\right )^5 \, dx=x^{1+m} \left (\frac {1}{1+m}+\frac {11 x}{2+m}+\frac {55 x^2}{3+m}+\frac {165 x^3}{4+m}+\frac {330 x^4}{5+m}+\frac {462 x^5}{6+m}+\frac {462 x^6}{7+m}+\frac {330 x^7}{8+m}+\frac {165 x^8}{9+m}+\frac {55 x^9}{10+m}+\frac {11 x^{10}}{11+m}+\frac {x^{11}}{12+m}\right ) \] Input:

Integrate[x^m*(1 + x)*(1 + 2*x + x^2)^5,x]
 

Output:

x^(1 + m)*((1 + m)^(-1) + (11*x)/(2 + m) + (55*x^2)/(3 + m) + (165*x^3)/(4 
 + m) + (330*x^4)/(5 + m) + (462*x^5)/(6 + m) + (462*x^6)/(7 + m) + (330*x 
^7)/(8 + m) + (165*x^8)/(9 + m) + (55*x^9)/(10 + m) + (11*x^10)/(11 + m) + 
 x^11/(12 + m))
 

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.176, Rules used = {1184, 53, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (x+1) \left (x^2+2 x+1\right )^5 x^m \, dx\)

\(\Big \downarrow \) 1184

\(\displaystyle \int (x+1)^{11} x^mdx\)

\(\Big \downarrow \) 53

\(\displaystyle \int \left (11 x^{m+1}+55 x^{m+2}+165 x^{m+3}+330 x^{m+4}+462 x^{m+5}+462 x^{m+6}+330 x^{m+7}+165 x^{m+8}+55 x^{m+9}+11 x^{m+10}+x^{m+11}+x^m\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {x^{m+1}}{m+1}+\frac {11 x^{m+2}}{m+2}+\frac {55 x^{m+3}}{m+3}+\frac {165 x^{m+4}}{m+4}+\frac {330 x^{m+5}}{m+5}+\frac {462 x^{m+6}}{m+6}+\frac {462 x^{m+7}}{m+7}+\frac {330 x^{m+8}}{m+8}+\frac {165 x^{m+9}}{m+9}+\frac {55 x^{m+10}}{m+10}+\frac {11 x^{m+11}}{m+11}+\frac {x^{m+12}}{m+12}\)

Input:

Int[x^m*(1 + x)*(1 + 2*x + x^2)^5,x]
 

Output:

x^(1 + m)/(1 + m) + (11*x^(2 + m))/(2 + m) + (55*x^(3 + m))/(3 + m) + (165 
*x^(4 + m))/(4 + m) + (330*x^(5 + m))/(5 + m) + (462*x^(6 + m))/(6 + m) + 
(462*x^(7 + m))/(7 + m) + (330*x^(8 + m))/(8 + m) + (165*x^(9 + m))/(9 + m 
) + (55*x^(10 + m))/(10 + m) + (11*x^(11 + m))/(11 + m) + x^(12 + m)/(12 + 
 m)
 

Defintions of rubi rules used

rule 53
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int 
[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, 
x] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0] && LeQ[7*m + 4*n + 4, 0]) 
|| LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])
 

rule 1184
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_) + (b_.)*(x_ 
) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[1/c^p   Int[(d + e*x)^m*(f + g*x 
)^n*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n}, x] && E 
qQ[b^2 - 4*a*c, 0] && IntegerQ[p]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1094\) vs. \(2(143)=286\).

Time = 0.92 (sec) , antiderivative size = 1095, normalized size of antiderivative = 7.66

method result size
risch \(\text {Expression too large to display}\) \(1095\)
gosper \(\text {Expression too large to display}\) \(1096\)
orering \(\text {Expression too large to display}\) \(1110\)
parallelrisch \(\text {Expression too large to display}\) \(1561\)

Input:

int(x^m*(x+1)*(x^2+2*x+1)^5,x,method=_RETURNVERBOSE)
 

Output:

x^m*(m^11*x^11+11*m^11*x^10+66*m^10*x^11+55*m^11*x^9+737*m^10*x^10+1925*m^ 
9*x^11+165*m^11*x^8+3740*m^10*x^9+21780*m^9*x^10+32670*m^8*x^11+330*m^11*x 
^7+11385*m^10*x^8+112035*m^9*x^9+373890*m^8*x^10+357423*m^7*x^11+462*m^11* 
x^6+23100*m^10*x^7+345840*m^9*x^8+1947000*m^8*x^9+4131303*m^7*x^10+2637558 
*m^6*x^11+462*m^11*x^5+32802*m^10*x^6+711810*m^9*x^7+6089490*m^8*x^8+21750 
465*m^7*x^9+30748641*m^6*x^10+13339535*m^5*x^11+330*m^11*x^4+33264*m^10*x^ 
5+1025640*m^9*x^6+12709620*m^8*x^7+68855985*m^7*x^8+163460220*m^6*x^9+1566 
57490*m^5*x^10+45995730*m^4*x^11+165*m^11*x^3+24090*m^10*x^4+1055670*m^9*x 
^5+18586260*m^8*x^6+145645830*m^7*x^7+523190745*m^6*x^8+839860505*m^5*x^9+ 
543539260*m^4*x^10+105258076*m^3*x^11+55*m^11*x^2+12210*m^10*x^3+776160*m^ 
9*x^4+19431720*m^8*x^5+216148086*m^7*x^6+1120622580*m^6*x^7+2714671410*m^5 
*x^8+2935253200*m^4*x^9+1250343336*m^3*x^10+150917976*m^2*x^11+11*m^11*x+4 
125*m^10*x^2+399465*m^9*x^3+14523300*m^8*x^4+229661586*m^7*x^5+1687068306* 
m^6*x^6+5881795590*m^5*x^7+9569532060*m^4*x^8+6793843980*m^3*x^9+180038707 
2*m^2*x^10+120543840*m*x^11+m^11+836*m^10*x+137060*m^9*x^2+7604190*m^8*x^3 
+174706290*m^7*x^4+1822135392*m^6*x^5+8976008580*m^5*x^6+20948784780*m^4*x 
^7+22313339400*m^3*x^8+9832379040*m^2*x^9+1442897280*m*x^10+39916800*x^11+ 
77*m^10+28215*m^9*x+2656170*m^8*x^2+93244635*m^7*x^3+1412257770*m^6*x^4+98 
52674370*m^5*x^5+32372349240*m^4*x^6+49287977640*m^3*x^7+32492401920*m^2*x 
^8+7911984960*m*x^9+479001600*x^10+2640*m^9+557040*m^8*x+33251955*m^7*x...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 757 vs. \(2 (143) = 286\).

Time = 0.09 (sec) , antiderivative size = 757, normalized size of antiderivative = 5.29 \[ \int x^m (1+x) \left (1+2 x+x^2\right )^5 \, dx=\text {Too large to display} \] Input:

integrate(x^m*(1+x)*(x^2+2*x+1)^5,x, algorithm="fricas")
 

Output:

((m^11 + 66*m^10 + 1925*m^9 + 32670*m^8 + 357423*m^7 + 2637558*m^6 + 13339 
535*m^5 + 45995730*m^4 + 105258076*m^3 + 150917976*m^2 + 120543840*m + 399 
16800)*x^12 + 11*(m^11 + 67*m^10 + 1980*m^9 + 33990*m^8 + 375573*m^7 + 279 
5331*m^6 + 14241590*m^5 + 49412660*m^4 + 113667576*m^3 + 163671552*m^2 + 1 
31172480*m + 43545600)*x^11 + 55*(m^11 + 68*m^10 + 2037*m^9 + 35400*m^8 + 
395463*m^7 + 2972004*m^6 + 15270191*m^5 + 53368240*m^4 + 123524436*m^3 + 1 
78770528*m^2 + 143854272*m + 47900160)*x^10 + 165*(m^11 + 69*m^10 + 2096*m 
^9 + 36906*m^8 + 417309*m^7 + 3170853*m^6 + 16452554*m^5 + 57997164*m^4 + 
135232360*m^3 + 196923648*m^2 + 159246720*m + 53222400)*x^9 + 330*(m^11 + 
70*m^10 + 2157*m^9 + 38514*m^8 + 441351*m^7 + 3395826*m^6 + 17823623*m^5 + 
 63481166*m^4 + 149357508*m^3 + 219154824*m^2 + 178320960*m + 59875200)*x^ 
8 + 462*(m^11 + 71*m^10 + 2220*m^9 + 40230*m^8 + 467853*m^7 + 3651663*m^6 
+ 19428590*m^5 + 70070020*m^4 + 166716696*m^3 + 246998016*m^2 + 202573440* 
m + 68428800)*x^7 + 462*(m^11 + 72*m^10 + 2285*m^9 + 42060*m^8 + 497103*m^ 
7 + 3944016*m^6 + 21326135*m^5 + 78113340*m^4 + 188526796*m^3 + 282854112* 
m^2 + 234434880*m + 79833600)*x^6 + 330*(m^11 + 73*m^10 + 2352*m^9 + 44010 
*m^8 + 529413*m^7 + 4279569*m^6 + 23592386*m^5 + 88108220*m^4 + 216665736* 
m^3 + 330686208*m^2 + 278128512*m + 95800320)*x^5 + 165*(m^11 + 74*m^10 + 
2421*m^9 + 46086*m^8 + 565119*m^7 + 4666158*m^6 + 26325599*m^5 + 100767754 
*m^4 + 254135820*m^3 + 397471608*m^2 + 341673120*m + 119750400)*x^4 + 5...
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 11008 vs. \(2 (117) = 234\).

Time = 1.04 (sec) , antiderivative size = 11008, normalized size of antiderivative = 76.98 \[ \int x^m (1+x) \left (1+2 x+x^2\right )^5 \, dx=\text {Too large to display} \] Input:

integrate(x**m*(1+x)*(x**2+2*x+1)**5,x)
 

Output:

Piecewise((log(x) - 11/x - 55/(2*x**2) - 55/x**3 - 165/(2*x**4) - 462/(5*x 
**5) - 77/x**6 - 330/(7*x**7) - 165/(8*x**8) - 55/(9*x**9) - 11/(10*x**10) 
 - 1/(11*x**11), Eq(m, -12)), (x + 11*log(x) - 55/x - 165/(2*x**2) - 110/x 
**3 - 231/(2*x**4) - 462/(5*x**5) - 55/x**6 - 165/(7*x**7) - 55/(8*x**8) - 
 11/(9*x**9) - 1/(10*x**10), Eq(m, -11)), (x**2/2 + 11*x + 55*log(x) - 165 
/x - 165/x**2 - 154/x**3 - 231/(2*x**4) - 66/x**5 - 55/(2*x**6) - 55/(7*x* 
*7) - 11/(8*x**8) - 1/(9*x**9), Eq(m, -10)), (x**3/3 + 11*x**2/2 + 55*x + 
165*log(x) - 330/x - 231/x**2 - 154/x**3 - 165/(2*x**4) - 33/x**5 - 55/(6* 
x**6) - 11/(7*x**7) - 1/(8*x**8), Eq(m, -9)), (x**4/4 + 11*x**3/3 + 55*x** 
2/2 + 165*x + 330*log(x) - 462/x - 231/x**2 - 110/x**3 - 165/(4*x**4) - 11 
/x**5 - 11/(6*x**6) - 1/(7*x**7), Eq(m, -8)), (x**5/5 + 11*x**4/4 + 55*x** 
3/3 + 165*x**2/2 + 330*x + 462*log(x) - 462/x - 165/x**2 - 55/x**3 - 55/(4 
*x**4) - 11/(5*x**5) - 1/(6*x**6), Eq(m, -7)), (x**6/6 + 11*x**5/5 + 55*x* 
*4/4 + 55*x**3 + 165*x**2 + 462*x + 462*log(x) - 330/x - 165/(2*x**2) - 55 
/(3*x**3) - 11/(4*x**4) - 1/(5*x**5), Eq(m, -6)), (x**7/7 + 11*x**6/6 + 11 
*x**5 + 165*x**4/4 + 110*x**3 + 231*x**2 + 462*x + 330*log(x) - 165/x - 55 
/(2*x**2) - 11/(3*x**3) - 1/(4*x**4), Eq(m, -5)), (x**8/8 + 11*x**7/7 + 55 
*x**6/6 + 33*x**5 + 165*x**4/2 + 154*x**3 + 231*x**2 + 330*x + 165*log(x) 
- 55/x - 11/(2*x**2) - 1/(3*x**3), Eq(m, -4)), (x**9/9 + 11*x**8/8 + 55*x* 
*7/7 + 55*x**6/2 + 66*x**5 + 231*x**4/2 + 154*x**3 + 165*x**2 + 165*x +...
 

Maxima [A] (verification not implemented)

Time = 0.03 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.00 \[ \int x^m (1+x) \left (1+2 x+x^2\right )^5 \, dx=\frac {x^{m + 12}}{m + 12} + \frac {11 \, x^{m + 11}}{m + 11} + \frac {55 \, x^{m + 10}}{m + 10} + \frac {165 \, x^{m + 9}}{m + 9} + \frac {330 \, x^{m + 8}}{m + 8} + \frac {462 \, x^{m + 7}}{m + 7} + \frac {462 \, x^{m + 6}}{m + 6} + \frac {330 \, x^{m + 5}}{m + 5} + \frac {165 \, x^{m + 4}}{m + 4} + \frac {55 \, x^{m + 3}}{m + 3} + \frac {11 \, x^{m + 2}}{m + 2} + \frac {x^{m + 1}}{m + 1} \] Input:

integrate(x^m*(1+x)*(x^2+2*x+1)^5,x, algorithm="maxima")
 

Output:

x^(m + 12)/(m + 12) + 11*x^(m + 11)/(m + 11) + 55*x^(m + 10)/(m + 10) + 16 
5*x^(m + 9)/(m + 9) + 330*x^(m + 8)/(m + 8) + 462*x^(m + 7)/(m + 7) + 462* 
x^(m + 6)/(m + 6) + 330*x^(m + 5)/(m + 5) + 165*x^(m + 4)/(m + 4) + 55*x^( 
m + 3)/(m + 3) + 11*x^(m + 2)/(m + 2) + x^(m + 1)/(m + 1)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1560 vs. \(2 (143) = 286\).

Time = 0.27 (sec) , antiderivative size = 1560, normalized size of antiderivative = 10.91 \[ \int x^m (1+x) \left (1+2 x+x^2\right )^5 \, dx=\text {Too large to display} \] Input:

integrate(x^m*(1+x)*(x^2+2*x+1)^5,x, algorithm="giac")
 

Output:

(m^11*x^12*x^m + 11*m^11*x^11*x^m + 66*m^10*x^12*x^m + 55*m^11*x^10*x^m + 
737*m^10*x^11*x^m + 1925*m^9*x^12*x^m + 165*m^11*x^9*x^m + 3740*m^10*x^10* 
x^m + 21780*m^9*x^11*x^m + 32670*m^8*x^12*x^m + 330*m^11*x^8*x^m + 11385*m 
^10*x^9*x^m + 112035*m^9*x^10*x^m + 373890*m^8*x^11*x^m + 357423*m^7*x^12* 
x^m + 462*m^11*x^7*x^m + 23100*m^10*x^8*x^m + 345840*m^9*x^9*x^m + 1947000 
*m^8*x^10*x^m + 4131303*m^7*x^11*x^m + 2637558*m^6*x^12*x^m + 462*m^11*x^6 
*x^m + 32802*m^10*x^7*x^m + 711810*m^9*x^8*x^m + 6089490*m^8*x^9*x^m + 217 
50465*m^7*x^10*x^m + 30748641*m^6*x^11*x^m + 13339535*m^5*x^12*x^m + 330*m 
^11*x^5*x^m + 33264*m^10*x^6*x^m + 1025640*m^9*x^7*x^m + 12709620*m^8*x^8* 
x^m + 68855985*m^7*x^9*x^m + 163460220*m^6*x^10*x^m + 156657490*m^5*x^11*x 
^m + 45995730*m^4*x^12*x^m + 165*m^11*x^4*x^m + 24090*m^10*x^5*x^m + 10556 
70*m^9*x^6*x^m + 18586260*m^8*x^7*x^m + 145645830*m^7*x^8*x^m + 523190745* 
m^6*x^9*x^m + 839860505*m^5*x^10*x^m + 543539260*m^4*x^11*x^m + 105258076* 
m^3*x^12*x^m + 55*m^11*x^3*x^m + 12210*m^10*x^4*x^m + 776160*m^9*x^5*x^m + 
 19431720*m^8*x^6*x^m + 216148086*m^7*x^7*x^m + 1120622580*m^6*x^8*x^m + 2 
714671410*m^5*x^9*x^m + 2935253200*m^4*x^10*x^m + 1250343336*m^3*x^11*x^m 
+ 150917976*m^2*x^12*x^m + 11*m^11*x^2*x^m + 4125*m^10*x^3*x^m + 399465*m^ 
9*x^4*x^m + 14523300*m^8*x^5*x^m + 229661586*m^7*x^6*x^m + 1687068306*m^6* 
x^7*x^m + 5881795590*m^5*x^8*x^m + 9569532060*m^4*x^9*x^m + 6793843980*m^3 
*x^10*x^m + 1800387072*m^2*x^11*x^m + 120543840*m*x^12*x^m + m^11*x*x^m...
 

Mupad [B] (verification not implemented)

Time = 11.70 (sec) , antiderivative size = 1459, normalized size of antiderivative = 10.20 \[ \int x^m (1+x) \left (1+2 x+x^2\right )^5 \, dx=\text {Too large to display} \] Input:

int(x^m*(x + 1)*(2*x + x^2 + 1)^5,x)
 

Output:

(x^m*x^8*(58845916800*m + 72321091920*m^2 + 49287977640*m^3 + 20948784780* 
m^4 + 5881795590*m^5 + 1120622580*m^6 + 145645830*m^7 + 12709620*m^8 + 711 
810*m^9 + 23100*m^10 + 330*m^11 + 19758816000))/(1486442880*m + 1931559552 
*m^2 + 1414014888*m^3 + 657206836*m^4 + 206070150*m^5 + 44990231*m^6 + 692 
6634*m^7 + 749463*m^8 + 55770*m^9 + 2717*m^10 + 78*m^11 + m^12 + 479001600 
) + (x^m*x^10*(7911984960*m + 9832379040*m^2 + 6793843980*m^3 + 2935253200 
*m^4 + 839860505*m^5 + 163460220*m^6 + 21750465*m^7 + 1947000*m^8 + 112035 
*m^9 + 3740*m^10 + 55*m^11 + 2634508800))/(1486442880*m + 1931559552*m^2 + 
 1414014888*m^3 + 657206836*m^4 + 206070150*m^5 + 44990231*m^6 + 6926634*m 
^7 + 749463*m^8 + 55770*m^9 + 2717*m^10 + 78*m^11 + m^12 + 479001600) + (x 
^m*x^2*(6858181440*m + 7194486816*m^2 + 4179838476*m^3 + 1524718360*m^4 + 
371026645*m^5 + 61932948*m^6 + 7130013*m^7 + 557040*m^8 + 28215*m^9 + 836* 
m^10 + 11*m^11 + 2634508800))/(1486442880*m + 1931559552*m^2 + 1414014888* 
m^3 + 657206836*m^4 + 206070150*m^5 + 44990231*m^6 + 6926634*m^7 + 749463* 
m^8 + 55770*m^9 + 2717*m^10 + 78*m^11 + m^12 + 479001600) + (x^m*x^11*(144 
2897280*m + 1800387072*m^2 + 1250343336*m^3 + 543539260*m^4 + 156657490*m^ 
5 + 30748641*m^6 + 4131303*m^7 + 373890*m^8 + 21780*m^9 + 737*m^10 + 11*m^ 
11 + 479001600))/(1486442880*m + 1931559552*m^2 + 1414014888*m^3 + 6572068 
36*m^4 + 206070150*m^5 + 44990231*m^6 + 6926634*m^7 + 749463*m^8 + 55770*m 
^9 + 2717*m^10 + 78*m^11 + m^12 + 479001600) + (x^m*x^6*(108308914560*m...
 

Reduce [B] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 1094, normalized size of antiderivative = 7.65 \[ \int x^m (1+x) \left (1+2 x+x^2\right )^5 \, dx =\text {Too large to display} \] Input:

int(x^m*(1+x)*(x^2+2*x+1)^5,x)
 

Output:

(x**m*x*(m**11*x**11 + 11*m**11*x**10 + 55*m**11*x**9 + 165*m**11*x**8 + 3 
30*m**11*x**7 + 462*m**11*x**6 + 462*m**11*x**5 + 330*m**11*x**4 + 165*m** 
11*x**3 + 55*m**11*x**2 + 11*m**11*x + m**11 + 66*m**10*x**11 + 737*m**10* 
x**10 + 3740*m**10*x**9 + 11385*m**10*x**8 + 23100*m**10*x**7 + 32802*m**1 
0*x**6 + 33264*m**10*x**5 + 24090*m**10*x**4 + 12210*m**10*x**3 + 4125*m** 
10*x**2 + 836*m**10*x + 77*m**10 + 1925*m**9*x**11 + 21780*m**9*x**10 + 11 
2035*m**9*x**9 + 345840*m**9*x**8 + 711810*m**9*x**7 + 1025640*m**9*x**6 + 
 1055670*m**9*x**5 + 776160*m**9*x**4 + 399465*m**9*x**3 + 137060*m**9*x** 
2 + 28215*m**9*x + 2640*m**9 + 32670*m**8*x**11 + 373890*m**8*x**10 + 1947 
000*m**8*x**9 + 6089490*m**8*x**8 + 12709620*m**8*x**7 + 18586260*m**8*x** 
6 + 19431720*m**8*x**5 + 14523300*m**8*x**4 + 7604190*m**8*x**3 + 2656170* 
m**8*x**2 + 557040*m**8*x + 53130*m**8 + 357423*m**7*x**11 + 4131303*m**7* 
x**10 + 21750465*m**7*x**9 + 68855985*m**7*x**8 + 145645830*m**7*x**7 + 21 
6148086*m**7*x**6 + 229661586*m**7*x**5 + 174706290*m**7*x**4 + 93244635*m 
**7*x**3 + 33251955*m**7*x**2 + 7130013*m**7*x + 696333*m**7 + 2637558*m** 
6*x**11 + 30748641*m**6*x**10 + 163460220*m**6*x**9 + 523190745*m**6*x**8 
+ 1120622580*m**6*x**7 + 1687068306*m**6*x**6 + 1822135392*m**6*x**5 + 141 
2257770*m**6*x**4 + 769916070*m**6*x**3 + 281209005*m**6*x**2 + 61932948*m 
**6*x + 6230301*m**6 + 13339535*m**5*x**11 + 156657490*m**5*x**10 + 839860 
505*m**5*x**9 + 2714671410*m**5*x**8 + 5881795590*m**5*x**7 + 897600858...