\(\int \frac {\sqrt {1+x} \sqrt {1-x+x^2}}{x^2} \, dx\) [477]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 287 \[ \int \frac {\sqrt {1+x} \sqrt {1-x+x^2}}{x^2} \, dx=-\frac {\sqrt {1+x} \sqrt {1-x+x^2}}{x}+\frac {3 \sqrt {1+x} \sqrt {1-x+x^2}}{1+\sqrt {3}+x}-\frac {3 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (1+x)^{3/2} \sqrt {1-x+x^2} \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} E\left (\arcsin \left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{2 \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \left (1+x^3\right )}+\frac {\sqrt {2} 3^{3/4} (1+x)^{3/2} \sqrt {1-x+x^2} \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right ),-7-4 \sqrt {3}\right )}{\sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \left (1+x^3\right )} \] Output:

-(1+x)^(1/2)*(x^2-x+1)^(1/2)/x+3*(1+x)^(1/2)*(x^2-x+1)^(1/2)/(1+x+3^(1/2)) 
-3/2*3^(1/4)*(1/2*6^(1/2)-1/2*2^(1/2))*(1+x)^(3/2)*(x^2-x+1)^(1/2)*((x^2-x 
+1)/(1+x+3^(1/2))^2)^(1/2)*EllipticE((1+x-3^(1/2))/(1+x+3^(1/2)),I*3^(1/2) 
+2*I)/((1+x)/(1+x+3^(1/2))^2)^(1/2)/(x^3+1)+2^(1/2)*3^(3/4)*(1+x)^(3/2)*(x 
^2-x+1)^(1/2)*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)*EllipticF((1+x-3^(1/2))/(1 
+x+3^(1/2)),I*3^(1/2)+2*I)/((1+x)/(1+x+3^(1/2))^2)^(1/2)/(x^3+1)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.54 (sec) , antiderivative size = 349, normalized size of antiderivative = 1.22 \[ \int \frac {\sqrt {1+x} \sqrt {1-x+x^2}}{x^2} \, dx=-\frac {\sqrt {1+x} \sqrt {1-x+x^2}}{x}+\frac {3 \sqrt {1+\frac {2 i (1+x)}{-3 i+\sqrt {3}}} \sqrt {1-\frac {2 i (1+x)}{3 i+\sqrt {3}}} \left (-\frac {\left (-3 i+\sqrt {3}\right ) \sqrt {-\frac {i}{3 i+\sqrt {3}}} \sqrt {1+x} E\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {-\frac {i (1+x)}{3 i+\sqrt {3}}}\right )|\frac {3 i+\sqrt {3}}{3 i-\sqrt {3}}\right )}{\sqrt {-\frac {i (1+x)}{3 i+\sqrt {3}}}}+\frac {\left (-i+\sqrt {3}\right ) \sqrt {-\frac {i}{3 i+\sqrt {3}}} \sqrt {1+x} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {-\frac {i (1+x)}{3 i+\sqrt {3}}}\right ),\frac {3 i+\sqrt {3}}{3 i-\sqrt {3}}\right )}{\sqrt {-\frac {i (1+x)}{3 i+\sqrt {3}}}}\right )}{2 \sqrt {2} \sqrt {-\frac {i}{3 i+\sqrt {3}}} \sqrt {3-3 (1+x)+(1+x)^2}} \] Input:

Integrate[(Sqrt[1 + x]*Sqrt[1 - x + x^2])/x^2,x]
 

Output:

-((Sqrt[1 + x]*Sqrt[1 - x + x^2])/x) + (3*Sqrt[1 + ((2*I)*(1 + x))/(-3*I + 
 Sqrt[3])]*Sqrt[1 - ((2*I)*(1 + x))/(3*I + Sqrt[3])]*(-(((-3*I + Sqrt[3])* 
Sqrt[(-I)/(3*I + Sqrt[3])]*Sqrt[1 + x]*EllipticE[I*ArcSinh[Sqrt[2]*Sqrt[(( 
-I)*(1 + x))/(3*I + Sqrt[3])]], (3*I + Sqrt[3])/(3*I - Sqrt[3])])/Sqrt[((- 
I)*(1 + x))/(3*I + Sqrt[3])]) + ((-I + Sqrt[3])*Sqrt[(-I)/(3*I + Sqrt[3])] 
*Sqrt[1 + x]*EllipticF[I*ArcSinh[Sqrt[2]*Sqrt[((-I)*(1 + x))/(3*I + Sqrt[3 
])]], (3*I + Sqrt[3])/(3*I - Sqrt[3])])/Sqrt[((-I)*(1 + x))/(3*I + Sqrt[3] 
)]))/(2*Sqrt[2]*Sqrt[(-I)/(3*I + Sqrt[3])]*Sqrt[3 - 3*(1 + x) + (1 + x)^2] 
)
 

Rubi [A] (warning: unable to verify)

Time = 0.63 (sec) , antiderivative size = 287, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {1210, 809, 832, 759, 2416}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {x+1} \sqrt {x^2-x+1}}{x^2} \, dx\)

\(\Big \downarrow \) 1210

\(\displaystyle \frac {\sqrt {x+1} \sqrt {x^2-x+1} \int \frac {\sqrt {x^3+1}}{x^2}dx}{\sqrt {x^3+1}}\)

\(\Big \downarrow \) 809

\(\displaystyle \frac {\sqrt {x+1} \sqrt {x^2-x+1} \left (\frac {3}{2} \int \frac {x}{\sqrt {x^3+1}}dx-\frac {\sqrt {x^3+1}}{x}\right )}{\sqrt {x^3+1}}\)

\(\Big \downarrow \) 832

\(\displaystyle \frac {\sqrt {x+1} \sqrt {x^2-x+1} \left (\frac {3}{2} \left (\int \frac {x-\sqrt {3}+1}{\sqrt {x^3+1}}dx-\left (1-\sqrt {3}\right ) \int \frac {1}{\sqrt {x^3+1}}dx\right )-\frac {\sqrt {x^3+1}}{x}\right )}{\sqrt {x^3+1}}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {\sqrt {x+1} \sqrt {x^2-x+1} \left (\frac {3}{2} \left (\int \frac {x-\sqrt {3}+1}{\sqrt {x^3+1}}dx-\frac {2 \left (1-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\right )-\frac {\sqrt {x^3+1}}{x}\right )}{\sqrt {x^3+1}}\)

\(\Big \downarrow \) 2416

\(\displaystyle \frac {\sqrt {x+1} \sqrt {x^2-x+1} \left (\frac {3}{2} \left (-\frac {2 \left (1-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} E\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{\sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}+\frac {2 \sqrt {x^3+1}}{x+\sqrt {3}+1}\right )-\frac {\sqrt {x^3+1}}{x}\right )}{\sqrt {x^3+1}}\)

Input:

Int[(Sqrt[1 + x]*Sqrt[1 - x + x^2])/x^2,x]
 

Output:

(Sqrt[1 + x]*Sqrt[1 - x + x^2]*(-(Sqrt[1 + x^3]/x) + (3*((2*Sqrt[1 + x^3]) 
/(1 + Sqrt[3] + x) - (3^(1/4)*Sqrt[2 - Sqrt[3]]*(1 + x)*Sqrt[(1 - x + x^2) 
/(1 + Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x) 
], -7 - 4*Sqrt[3]])/(Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3]) - (2 
*(1 - Sqrt[3])*Sqrt[2 + Sqrt[3]]*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + 
 x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[ 
3]])/(3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])))/2))/Sqrt[ 
1 + x^3]
 

Defintions of rubi rules used

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 809
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c* 
x)^(m + 1)*((a + b*x^n)^p/(c*(m + 1))), x] - Simp[b*n*(p/(c^n*(m + 1)))   I 
nt[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && IGtQ 
[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntB 
inomialQ[a, b, c, n, m, p, x]
 

rule 832
Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3] 
], s = Denom[Rt[b/a, 3]]}, Simp[(-(1 - Sqrt[3]))*(s/r)   Int[1/Sqrt[a + b*x 
^3], x], x] + Simp[1/r   Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x], x 
]] /; FreeQ[{a, b}, x] && PosQ[a]
 

rule 1210
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_.)*((a_) + (b_.)*(x_) 
 + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^FracPart[p]*((a + b*x + 
c*x^2)^FracPart[p]/(a*d + c*e*x^3)^FracPart[p])   Int[(f + g*x)^n*(a*d + c* 
e*x^3)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[b*d + a*e, 
 0] && EqQ[c*d + b*e, 0] && EqQ[m, p]
 

rule 2416
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 - Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 - Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x] - S 
imp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 + Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt 
[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3]) 
*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && Eq 
Q[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]
 
Maple [A] (verified)

Time = 2.65 (sec) , antiderivative size = 216, normalized size of antiderivative = 0.75

method result size
elliptic \(\frac {\sqrt {\left (x +1\right ) \left (x^{2}-x +1\right )}\, \left (-\frac {\sqrt {x^{3}+1}}{x}+\frac {3 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \left (\left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticE}\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )+\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticF}\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )\right )}{\sqrt {x^{3}+1}}\right )}{\sqrt {x +1}\, \sqrt {x^{2}-x +1}}\) \(216\)
risch \(-\frac {\sqrt {x +1}\, \sqrt {x^{2}-x +1}}{x}+\frac {3 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \left (\left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticE}\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )+\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticF}\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )\right ) \sqrt {\left (x +1\right ) \left (x^{2}-x +1\right )}}{\sqrt {x^{3}+1}\, \sqrt {x +1}\, \sqrt {x^{2}-x +1}}\) \(223\)
default \(\frac {\sqrt {x +1}\, \sqrt {x^{2}-x +1}\, \left (3 i \sqrt {-\frac {2 \left (x +1\right )}{i \sqrt {3}-3}}\, \sqrt {\frac {i \sqrt {3}-2 x +1}{i \sqrt {3}+3}}\, \sqrt {\frac {i \sqrt {3}+2 x -1}{i \sqrt {3}-3}}\, \operatorname {EllipticF}\left (\sqrt {-\frac {2 \left (x +1\right )}{i \sqrt {3}-3}}, \sqrt {-\frac {i \sqrt {3}-3}{i \sqrt {3}+3}}\right ) \sqrt {3}\, x +9 \sqrt {-\frac {2 \left (x +1\right )}{i \sqrt {3}-3}}\, \sqrt {\frac {i \sqrt {3}-2 x +1}{i \sqrt {3}+3}}\, \sqrt {\frac {i \sqrt {3}+2 x -1}{i \sqrt {3}-3}}\, \operatorname {EllipticF}\left (\sqrt {-\frac {2 \left (x +1\right )}{i \sqrt {3}-3}}, \sqrt {-\frac {i \sqrt {3}-3}{i \sqrt {3}+3}}\right ) x -18 \sqrt {-\frac {2 \left (x +1\right )}{i \sqrt {3}-3}}\, \sqrt {\frac {i \sqrt {3}-2 x +1}{i \sqrt {3}+3}}\, \sqrt {\frac {i \sqrt {3}+2 x -1}{i \sqrt {3}-3}}\, \operatorname {EllipticE}\left (\sqrt {-\frac {2 \left (x +1\right )}{i \sqrt {3}-3}}, \sqrt {-\frac {i \sqrt {3}-3}{i \sqrt {3}+3}}\right ) x -2 x^{3}-2\right )}{2 x \left (x^{3}+1\right )}\) \(363\)

Input:

int((x+1)^(1/2)*(x^2-x+1)^(1/2)/x^2,x,method=_RETURNVERBOSE)
 

Output:

((x+1)*(x^2-x+1))^(1/2)/(x+1)^(1/2)/(x^2-x+1)^(1/2)*(-1/x*(x^3+1)^(1/2)+3* 
(3/2-1/2*I*3^(1/2))*((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2 
))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)) 
)^(1/2)/(x^3+1)^(1/2)*((-3/2-1/2*I*3^(1/2))*EllipticE(((x+1)/(3/2-1/2*I*3^ 
(1/2)))^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))+(1/2+1/2* 
I*3^(1/2))*EllipticF(((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2),((-3/2+1/2*I*3^(1/2 
))/(-3/2-1/2*I*3^(1/2)))^(1/2))))
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 32, normalized size of antiderivative = 0.11 \[ \int \frac {\sqrt {1+x} \sqrt {1-x+x^2}}{x^2} \, dx=-\frac {3 \, x {\rm weierstrassZeta}\left (0, -4, {\rm weierstrassPInverse}\left (0, -4, x\right )\right ) + \sqrt {x^{2} - x + 1} \sqrt {x + 1}}{x} \] Input:

integrate((1+x)^(1/2)*(x^2-x+1)^(1/2)/x^2,x, algorithm="fricas")
 

Output:

-(3*x*weierstrassZeta(0, -4, weierstrassPInverse(0, -4, x)) + sqrt(x^2 - x 
 + 1)*sqrt(x + 1))/x
                                                                                    
                                                                                    
 

Sympy [F]

\[ \int \frac {\sqrt {1+x} \sqrt {1-x+x^2}}{x^2} \, dx=\int \frac {\sqrt {x + 1} \sqrt {x^{2} - x + 1}}{x^{2}}\, dx \] Input:

integrate((1+x)**(1/2)*(x**2-x+1)**(1/2)/x**2,x)
 

Output:

Integral(sqrt(x + 1)*sqrt(x**2 - x + 1)/x**2, x)
 

Maxima [F]

\[ \int \frac {\sqrt {1+x} \sqrt {1-x+x^2}}{x^2} \, dx=\int { \frac {\sqrt {x^{2} - x + 1} \sqrt {x + 1}}{x^{2}} \,d x } \] Input:

integrate((1+x)^(1/2)*(x^2-x+1)^(1/2)/x^2,x, algorithm="maxima")
 

Output:

integrate(sqrt(x^2 - x + 1)*sqrt(x + 1)/x^2, x)
 

Giac [F]

\[ \int \frac {\sqrt {1+x} \sqrt {1-x+x^2}}{x^2} \, dx=\int { \frac {\sqrt {x^{2} - x + 1} \sqrt {x + 1}}{x^{2}} \,d x } \] Input:

integrate((1+x)^(1/2)*(x^2-x+1)^(1/2)/x^2,x, algorithm="giac")
 

Output:

integrate(sqrt(x^2 - x + 1)*sqrt(x + 1)/x^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {1+x} \sqrt {1-x+x^2}}{x^2} \, dx=\int \frac {\sqrt {x+1}\,\sqrt {x^2-x+1}}{x^2} \,d x \] Input:

int(((x + 1)^(1/2)*(x^2 - x + 1)^(1/2))/x^2,x)
 

Output:

int(((x + 1)^(1/2)*(x^2 - x + 1)^(1/2))/x^2, x)
 

Reduce [F]

\[ \int \frac {\sqrt {1+x} \sqrt {1-x+x^2}}{x^2} \, dx=\frac {2 \sqrt {x +1}\, \sqrt {x^{2}-x +1}+3 \left (\int \frac {\sqrt {x +1}\, \sqrt {x^{2}-x +1}}{x^{5}+x^{2}}d x \right ) x}{x} \] Input:

int((1+x)^(1/2)*(x^2-x+1)^(1/2)/x^2,x)
 

Output:

(2*sqrt(x + 1)*sqrt(x**2 - x + 1) + 3*int((sqrt(x + 1)*sqrt(x**2 - x + 1)) 
/(x**5 + x**2),x)*x)/x