\(\int \frac {1}{x^2 (1+x)^{5/2} (1-x+x^2)^{5/2}} \, dx\) [505]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 349 \[ \int \frac {1}{x^2 (1+x)^{5/2} \left (1-x+x^2\right )^{5/2}} \, dx=\frac {22}{27 x \sqrt {1+x} \sqrt {1-x+x^2}}+\frac {2}{9 x \sqrt {1+x} \sqrt {1-x+x^2} \left (1+x^3\right )}-\frac {55 \left (1+x^3\right )}{27 x \sqrt {1+x} \sqrt {1-x+x^2}}+\frac {55 \left (1+x^3\right )}{27 \sqrt {1+x} \left (1+\sqrt {3}+x\right ) \sqrt {1-x+x^2}}-\frac {55 \sqrt {2-\sqrt {3}} \sqrt {1+x} \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} E\left (\arcsin \left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{18\ 3^{3/4} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1-x+x^2}}+\frac {55 \sqrt {2} \sqrt {1+x} \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right ),-7-4 \sqrt {3}\right )}{27 \sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1-x+x^2}} \] Output:

22/27/x/(1+x)^(1/2)/(x^2-x+1)^(1/2)+2/9/x/(1+x)^(1/2)/(x^2-x+1)^(1/2)/(x^3 
+1)-55/27*(x^3+1)/x/(1+x)^(1/2)/(x^2-x+1)^(1/2)+55/27*(x^3+1)/(1+x)^(1/2)/ 
(1+x+3^(1/2))/(x^2-x+1)^(1/2)-55/54*3^(1/4)*(1/2*6^(1/2)-1/2*2^(1/2))*(1+x 
)^(1/2)*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)*EllipticE((1+x-3^(1/2))/(1+x+3^( 
1/2)),I*3^(1/2)+2*I)/((1+x)/(1+x+3^(1/2))^2)^(1/2)/(x^2-x+1)^(1/2)+55/81*2 
^(1/2)*(1+x)^(1/2)*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)*EllipticF((1+x-3^(1/2 
))/(1+x+3^(1/2)),I*3^(1/2)+2*I)*3^(3/4)/((1+x)/(1+x+3^(1/2))^2)^(1/2)/(x^2 
-x+1)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.98 (sec) , antiderivative size = 414, normalized size of antiderivative = 1.19 \[ \int \frac {1}{x^2 (1+x)^{5/2} \left (1-x+x^2\right )^{5/2}} \, dx=-\frac {27+88 x^3+55 x^6}{27 x (1+x)^{3/2} \left (1-x+x^2\right )^{3/2}}+\frac {55 (1+x)^{3/2} \left (\frac {12 \sqrt {-\frac {i}{3 i+\sqrt {3}}} \left (1-x+x^2\right )}{(1+x)^2}+\frac {3 \sqrt {2} \left (1-i \sqrt {3}\right ) \sqrt {\frac {3 i+\sqrt {3}-\frac {6 i}{1+x}}{3 i+\sqrt {3}}} \sqrt {\frac {-3 i+\sqrt {3}+\frac {6 i}{1+x}}{-3 i+\sqrt {3}}} E\left (i \text {arcsinh}\left (\frac {\sqrt {-\frac {6 i}{3 i+\sqrt {3}}}}{\sqrt {1+x}}\right )|\frac {3 i+\sqrt {3}}{3 i-\sqrt {3}}\right )}{\sqrt {1+x}}+\frac {i \sqrt {2} \left (3 i+\sqrt {3}\right ) \sqrt {\frac {3 i+\sqrt {3}-\frac {6 i}{1+x}}{3 i+\sqrt {3}}} \sqrt {\frac {-3 i+\sqrt {3}+\frac {6 i}{1+x}}{-3 i+\sqrt {3}}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {-\frac {6 i}{3 i+\sqrt {3}}}}{\sqrt {1+x}}\right ),\frac {3 i+\sqrt {3}}{3 i-\sqrt {3}}\right )}{\sqrt {1+x}}\right )}{324 \sqrt {-\frac {i}{3 i+\sqrt {3}}} \sqrt {1-x+x^2}} \] Input:

Integrate[1/(x^2*(1 + x)^(5/2)*(1 - x + x^2)^(5/2)),x]
 

Output:

-1/27*(27 + 88*x^3 + 55*x^6)/(x*(1 + x)^(3/2)*(1 - x + x^2)^(3/2)) + (55*( 
1 + x)^(3/2)*((12*Sqrt[(-I)/(3*I + Sqrt[3])]*(1 - x + x^2))/(1 + x)^2 + (3 
*Sqrt[2]*(1 - I*Sqrt[3])*Sqrt[(3*I + Sqrt[3] - (6*I)/(1 + x))/(3*I + Sqrt[ 
3])]*Sqrt[(-3*I + Sqrt[3] + (6*I)/(1 + x))/(-3*I + Sqrt[3])]*EllipticE[I*A 
rcSinh[Sqrt[(-6*I)/(3*I + Sqrt[3])]/Sqrt[1 + x]], (3*I + Sqrt[3])/(3*I - S 
qrt[3])])/Sqrt[1 + x] + (I*Sqrt[2]*(3*I + Sqrt[3])*Sqrt[(3*I + Sqrt[3] - ( 
6*I)/(1 + x))/(3*I + Sqrt[3])]*Sqrt[(-3*I + Sqrt[3] + (6*I)/(1 + x))/(-3*I 
 + Sqrt[3])]*EllipticF[I*ArcSinh[Sqrt[(-6*I)/(3*I + Sqrt[3])]/Sqrt[1 + x]] 
, (3*I + Sqrt[3])/(3*I - Sqrt[3])])/Sqrt[1 + x]))/(324*Sqrt[(-I)/(3*I + Sq 
rt[3])]*Sqrt[1 - x + x^2])
 

Rubi [A] (warning: unable to verify)

Time = 0.72 (sec) , antiderivative size = 329, normalized size of antiderivative = 0.94, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {1210, 819, 819, 847, 832, 759, 2416}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^2 (x+1)^{5/2} \left (x^2-x+1\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 1210

\(\displaystyle \frac {\sqrt {x^3+1} \int \frac {1}{x^2 \left (x^3+1\right )^{5/2}}dx}{\sqrt {x+1} \sqrt {x^2-x+1}}\)

\(\Big \downarrow \) 819

\(\displaystyle \frac {\sqrt {x^3+1} \left (\frac {11}{9} \int \frac {1}{x^2 \left (x^3+1\right )^{3/2}}dx+\frac {2}{9 x \left (x^3+1\right )^{3/2}}\right )}{\sqrt {x+1} \sqrt {x^2-x+1}}\)

\(\Big \downarrow \) 819

\(\displaystyle \frac {\sqrt {x^3+1} \left (\frac {11}{9} \left (\frac {5}{3} \int \frac {1}{x^2 \sqrt {x^3+1}}dx+\frac {2}{3 x \sqrt {x^3+1}}\right )+\frac {2}{9 x \left (x^3+1\right )^{3/2}}\right )}{\sqrt {x+1} \sqrt {x^2-x+1}}\)

\(\Big \downarrow \) 847

\(\displaystyle \frac {\sqrt {x^3+1} \left (\frac {11}{9} \left (\frac {5}{3} \left (\frac {1}{2} \int \frac {x}{\sqrt {x^3+1}}dx-\frac {\sqrt {x^3+1}}{x}\right )+\frac {2}{3 x \sqrt {x^3+1}}\right )+\frac {2}{9 x \left (x^3+1\right )^{3/2}}\right )}{\sqrt {x+1} \sqrt {x^2-x+1}}\)

\(\Big \downarrow \) 832

\(\displaystyle \frac {\sqrt {x^3+1} \left (\frac {11}{9} \left (\frac {5}{3} \left (\frac {1}{2} \left (\int \frac {x-\sqrt {3}+1}{\sqrt {x^3+1}}dx-\left (1-\sqrt {3}\right ) \int \frac {1}{\sqrt {x^3+1}}dx\right )-\frac {\sqrt {x^3+1}}{x}\right )+\frac {2}{3 x \sqrt {x^3+1}}\right )+\frac {2}{9 x \left (x^3+1\right )^{3/2}}\right )}{\sqrt {x+1} \sqrt {x^2-x+1}}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {\sqrt {x^3+1} \left (\frac {11}{9} \left (\frac {5}{3} \left (\frac {1}{2} \left (\int \frac {x-\sqrt {3}+1}{\sqrt {x^3+1}}dx-\frac {2 \left (1-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\right )-\frac {\sqrt {x^3+1}}{x}\right )+\frac {2}{3 x \sqrt {x^3+1}}\right )+\frac {2}{9 x \left (x^3+1\right )^{3/2}}\right )}{\sqrt {x+1} \sqrt {x^2-x+1}}\)

\(\Big \downarrow \) 2416

\(\displaystyle \frac {\sqrt {x^3+1} \left (\frac {11}{9} \left (\frac {5}{3} \left (\frac {1}{2} \left (-\frac {2 \left (1-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} E\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{\sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}+\frac {2 \sqrt {x^3+1}}{x+\sqrt {3}+1}\right )-\frac {\sqrt {x^3+1}}{x}\right )+\frac {2}{3 x \sqrt {x^3+1}}\right )+\frac {2}{9 x \left (x^3+1\right )^{3/2}}\right )}{\sqrt {x+1} \sqrt {x^2-x+1}}\)

Input:

Int[1/(x^2*(1 + x)^(5/2)*(1 - x + x^2)^(5/2)),x]
 

Output:

(Sqrt[1 + x^3]*(2/(9*x*(1 + x^3)^(3/2)) + (11*(2/(3*x*Sqrt[1 + x^3]) + (5* 
(-(Sqrt[1 + x^3]/x) + ((2*Sqrt[1 + x^3])/(1 + Sqrt[3] + x) - (3^(1/4)*Sqrt 
[2 - Sqrt[3]]*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticE[Ar 
cSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(Sqrt[(1 + x)/ 
(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3]) - (2*(1 - Sqrt[3])*Sqrt[2 + Sqrt[3]]*( 
1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[ 
3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(3^(1/4)*Sqrt[(1 + x)/(1 + Sq 
rt[3] + x)^2]*Sqrt[1 + x^3]))/2))/3))/9))/(Sqrt[1 + x]*Sqrt[1 - x + x^2])
 

Defintions of rubi rules used

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 819
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-( 
c*x)^(m + 1))*((a + b*x^n)^(p + 1)/(a*c*n*(p + 1))), x] + Simp[(m + n*(p + 
1) + 1)/(a*n*(p + 1))   Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a 
, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p 
, x]
 

rule 832
Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3] 
], s = Denom[Rt[b/a, 3]]}, Simp[(-(1 - Sqrt[3]))*(s/r)   Int[1/Sqrt[a + b*x 
^3], x], x] + Simp[1/r   Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x], x 
]] /; FreeQ[{a, b}, x] && PosQ[a]
 

rule 847
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x 
)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + n*(p + 1) 
+ 1)/(a*c^n*(m + 1)))   Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a 
, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p 
, x]
 

rule 1210
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_.)*((a_) + (b_.)*(x_) 
 + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^FracPart[p]*((a + b*x + 
c*x^2)^FracPart[p]/(a*d + c*e*x^3)^FracPart[p])   Int[(f + g*x)^n*(a*d + c* 
e*x^3)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[b*d + a*e, 
 0] && EqQ[c*d + b*e, 0] && EqQ[m, p]
 

rule 2416
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 - Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 - Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x] - S 
imp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 + Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt 
[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3]) 
*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && Eq 
Q[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]
 
Maple [A] (verified)

Time = 3.16 (sec) , antiderivative size = 240, normalized size of antiderivative = 0.69

method result size
elliptic \(\frac {\sqrt {\left (x +1\right ) \left (x^{2}-x +1\right )}\, \left (-\frac {2 x^{2}}{9 \left (x^{3}+1\right )^{\frac {3}{2}}}-\frac {28 x^{2}}{27 \sqrt {x^{3}+1}}-\frac {\sqrt {x^{3}+1}}{x}+\frac {55 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \left (\left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticE}\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )+\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticF}\left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )\right )}{27 \sqrt {x^{3}+1}}\right )}{\sqrt {x +1}\, \sqrt {x^{2}-x +1}}\) \(240\)
default \(\frac {55 i \operatorname {EllipticF}\left (\sqrt {-\frac {2 \left (x +1\right )}{i \sqrt {3}-3}}, \sqrt {-\frac {i \sqrt {3}-3}{i \sqrt {3}+3}}\right ) \sqrt {3}\, x^{4} \sqrt {-\frac {2 \left (x +1\right )}{i \sqrt {3}-3}}\, \sqrt {\frac {i \sqrt {3}-2 x +1}{i \sqrt {3}+3}}\, \sqrt {\frac {i \sqrt {3}+2 x -1}{i \sqrt {3}-3}}+165 \operatorname {EllipticF}\left (\sqrt {-\frac {2 \left (x +1\right )}{i \sqrt {3}-3}}, \sqrt {-\frac {i \sqrt {3}-3}{i \sqrt {3}+3}}\right ) x^{4} \sqrt {-\frac {2 \left (x +1\right )}{i \sqrt {3}-3}}\, \sqrt {\frac {i \sqrt {3}-2 x +1}{i \sqrt {3}+3}}\, \sqrt {\frac {i \sqrt {3}+2 x -1}{i \sqrt {3}-3}}-330 \operatorname {EllipticE}\left (\sqrt {-\frac {2 \left (x +1\right )}{i \sqrt {3}-3}}, \sqrt {-\frac {i \sqrt {3}-3}{i \sqrt {3}+3}}\right ) x^{4} \sqrt {-\frac {2 \left (x +1\right )}{i \sqrt {3}-3}}\, \sqrt {\frac {i \sqrt {3}-2 x +1}{i \sqrt {3}+3}}\, \sqrt {\frac {i \sqrt {3}+2 x -1}{i \sqrt {3}-3}}+55 i \sqrt {-\frac {2 \left (x +1\right )}{i \sqrt {3}-3}}\, \sqrt {\frac {i \sqrt {3}-2 x +1}{i \sqrt {3}+3}}\, \sqrt {\frac {i \sqrt {3}+2 x -1}{i \sqrt {3}-3}}\, \operatorname {EllipticF}\left (\sqrt {-\frac {2 \left (x +1\right )}{i \sqrt {3}-3}}, \sqrt {-\frac {i \sqrt {3}-3}{i \sqrt {3}+3}}\right ) \sqrt {3}\, x -110 x^{6}+165 \sqrt {-\frac {2 \left (x +1\right )}{i \sqrt {3}-3}}\, \sqrt {\frac {i \sqrt {3}-2 x +1}{i \sqrt {3}+3}}\, \sqrt {\frac {i \sqrt {3}+2 x -1}{i \sqrt {3}-3}}\, \operatorname {EllipticF}\left (\sqrt {-\frac {2 \left (x +1\right )}{i \sqrt {3}-3}}, \sqrt {-\frac {i \sqrt {3}-3}{i \sqrt {3}+3}}\right ) x -330 \sqrt {-\frac {2 \left (x +1\right )}{i \sqrt {3}-3}}\, \sqrt {\frac {i \sqrt {3}-2 x +1}{i \sqrt {3}+3}}\, \sqrt {\frac {i \sqrt {3}+2 x -1}{i \sqrt {3}-3}}\, \operatorname {EllipticE}\left (\sqrt {-\frac {2 \left (x +1\right )}{i \sqrt {3}-3}}, \sqrt {-\frac {i \sqrt {3}-3}{i \sqrt {3}+3}}\right ) x -176 x^{3}-54}{54 x \left (x^{2}-x +1\right )^{\frac {3}{2}} \left (x +1\right )^{\frac {3}{2}}}\) \(695\)

Input:

int(1/x^2/(x+1)^(5/2)/(x^2-x+1)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

((x+1)*(x^2-x+1))^(1/2)/(x+1)^(1/2)/(x^2-x+1)^(1/2)*(-2/9*x^2/(x^3+1)^(3/2 
)-28/27/(x^3+1)^(1/2)*x^2-1/x*(x^3+1)^(1/2)+55/27*(3/2-1/2*I*3^(1/2))*((x+ 
1)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2))) 
^(1/2)*((x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1/2)*(( 
-3/2-1/2*I*3^(1/2))*EllipticE(((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2),((-3/2+1/2 
*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))+(1/2+1/2*I*3^(1/2))*EllipticF(((x 
+1)/(3/2-1/2*I*3^(1/2)))^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2))) 
^(1/2))))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 62, normalized size of antiderivative = 0.18 \[ \int \frac {1}{x^2 (1+x)^{5/2} \left (1-x+x^2\right )^{5/2}} \, dx=-\frac {{\left (55 \, x^{6} + 88 \, x^{3} + 27\right )} \sqrt {x^{2} - x + 1} \sqrt {x + 1} + 55 \, {\left (x^{7} + 2 \, x^{4} + x\right )} {\rm weierstrassZeta}\left (0, -4, {\rm weierstrassPInverse}\left (0, -4, x\right )\right )}{27 \, {\left (x^{7} + 2 \, x^{4} + x\right )}} \] Input:

integrate(1/x^2/(1+x)^(5/2)/(x^2-x+1)^(5/2),x, algorithm="fricas")
 

Output:

-1/27*((55*x^6 + 88*x^3 + 27)*sqrt(x^2 - x + 1)*sqrt(x + 1) + 55*(x^7 + 2* 
x^4 + x)*weierstrassZeta(0, -4, weierstrassPInverse(0, -4, x)))/(x^7 + 2*x 
^4 + x)
 

Sympy [F]

\[ \int \frac {1}{x^2 (1+x)^{5/2} \left (1-x+x^2\right )^{5/2}} \, dx=\int \frac {1}{x^{2} \left (x + 1\right )^{\frac {5}{2}} \left (x^{2} - x + 1\right )^{\frac {5}{2}}}\, dx \] Input:

integrate(1/x**2/(1+x)**(5/2)/(x**2-x+1)**(5/2),x)
 

Output:

Integral(1/(x**2*(x + 1)**(5/2)*(x**2 - x + 1)**(5/2)), x)
 

Maxima [F]

\[ \int \frac {1}{x^2 (1+x)^{5/2} \left (1-x+x^2\right )^{5/2}} \, dx=\int { \frac {1}{{\left (x^{2} - x + 1\right )}^{\frac {5}{2}} {\left (x + 1\right )}^{\frac {5}{2}} x^{2}} \,d x } \] Input:

integrate(1/x^2/(1+x)^(5/2)/(x^2-x+1)^(5/2),x, algorithm="maxima")
 

Output:

integrate(1/((x^2 - x + 1)^(5/2)*(x + 1)^(5/2)*x^2), x)
 

Giac [F]

\[ \int \frac {1}{x^2 (1+x)^{5/2} \left (1-x+x^2\right )^{5/2}} \, dx=\int { \frac {1}{{\left (x^{2} - x + 1\right )}^{\frac {5}{2}} {\left (x + 1\right )}^{\frac {5}{2}} x^{2}} \,d x } \] Input:

integrate(1/x^2/(1+x)^(5/2)/(x^2-x+1)^(5/2),x, algorithm="giac")
 

Output:

integrate(1/((x^2 - x + 1)^(5/2)*(x + 1)^(5/2)*x^2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^2 (1+x)^{5/2} \left (1-x+x^2\right )^{5/2}} \, dx=\int \frac {1}{x^2\,{\left (x+1\right )}^{5/2}\,{\left (x^2-x+1\right )}^{5/2}} \,d x \] Input:

int(1/(x^2*(x + 1)^(5/2)*(x^2 - x + 1)^(5/2)),x)
 

Output:

int(1/(x^2*(x + 1)^(5/2)*(x^2 - x + 1)^(5/2)), x)
 

Reduce [F]

\[ \int \frac {1}{x^2 (1+x)^{5/2} \left (1-x+x^2\right )^{5/2}} \, dx=\int \frac {\sqrt {x +1}\, \sqrt {x^{2}-x +1}}{x^{11}+3 x^{8}+3 x^{5}+x^{2}}d x \] Input:

int(1/x^2/(1+x)^(5/2)/(x^2-x+1)^(5/2),x)
 

Output:

int((sqrt(x + 1)*sqrt(x**2 - x + 1))/(x**11 + 3*x**8 + 3*x**5 + x**2),x)