\(\int \frac {1}{(d+e x) (a+b x+c x^2)^{5/2}} \, dx\) [49]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 307 \[ \int \frac {1}{(d+e x) \left (a+b x+c x^2\right )^{5/2}} \, dx=-\frac {2 \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{3 \left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \left (a+b x+c x^2\right )^{3/2}}-\frac {2 \left (4 a c e (2 c d-b e)^2+\left (b c d-b^2 e+2 a c e\right ) \left (3 \left (b^2-4 a c\right ) e^2-4 c d (2 c d-b e)\right )-c (2 c d-b e) \left (8 c^2 d^2-3 b^2 e^2-4 c e (2 b d-5 a e)\right ) x\right )}{3 \left (b^2-4 a c\right )^2 \left (c d^2-b d e+a e^2\right )^2 \sqrt {a+b x+c x^2}}+\frac {e^4 \text {arctanh}\left (\frac {b d-2 a e+(2 c d-b e) x}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x+c x^2}}\right )}{\left (c d^2-b d e+a e^2\right )^{5/2}} \] Output:

1/3*(-2*b*c*d+2*b^2*e-4*a*c*e-2*c*(-b*e+2*c*d)*x)/(-4*a*c+b^2)/(a*e^2-b*d* 
e+c*d^2)/(c*x^2+b*x+a)^(3/2)-2/3*(4*a*c*e*(-b*e+2*c*d)^2+(2*a*c*e-b^2*e+b* 
c*d)*(3*(-4*a*c+b^2)*e^2-4*c*d*(-b*e+2*c*d))-c*(-b*e+2*c*d)*(8*c^2*d^2-3*b 
^2*e^2-4*c*e*(-5*a*e+2*b*d))*x)/(-4*a*c+b^2)^2/(a*e^2-b*d*e+c*d^2)^2/(c*x^ 
2+b*x+a)^(1/2)+e^4*arctanh(1/2*(b*d-2*a*e+(-b*e+2*c*d)*x)/(a*e^2-b*d*e+c*d 
^2)^(1/2)/(c*x^2+b*x+a)^(1/2))/(a*e^2-b*d*e+c*d^2)^(5/2)
 

Mathematica [A] (verified)

Time = 10.52 (sec) , antiderivative size = 309, normalized size of antiderivative = 1.01 \[ \int \frac {1}{(d+e x) \left (a+b x+c x^2\right )^{5/2}} \, dx=-\frac {2 \left (-b^2 e+2 c (a e+c d x)+b c (d-e x)\right )}{3 \left (b^2-4 a c\right ) \left (c d^2+e (-b d+a e)\right ) (a+x (b+c x))^{3/2}}+\frac {2 \left (3 b^4 e^3+b^3 c e^2 (d+3 e x)+8 c^2 \left (3 a^2 e^3+2 c^2 d^3 x+5 a c d e^2 x\right )+4 b c^2 \left (2 c d^2 (d-3 e x)+5 a e^2 (d-e x)\right )+2 b^2 c e \left (-11 a e^2+c d (-6 d+e x)\right )\right )}{3 \left (b^2-4 a c\right )^2 \left (c d^2+e (-b d+a e)\right )^2 \sqrt {a+x (b+c x)}}-\frac {e^4 \text {arctanh}\left (\frac {-b d+2 a e-2 c d x+b e x}{2 \sqrt {c d^2+e (-b d+a e)} \sqrt {a+x (b+c x)}}\right )}{\left (c d^2+e (-b d+a e)\right )^{5/2}} \] Input:

Integrate[1/((d + e*x)*(a + b*x + c*x^2)^(5/2)),x]
 

Output:

(-2*(-(b^2*e) + 2*c*(a*e + c*d*x) + b*c*(d - e*x)))/(3*(b^2 - 4*a*c)*(c*d^ 
2 + e*(-(b*d) + a*e))*(a + x*(b + c*x))^(3/2)) + (2*(3*b^4*e^3 + b^3*c*e^2 
*(d + 3*e*x) + 8*c^2*(3*a^2*e^3 + 2*c^2*d^3*x + 5*a*c*d*e^2*x) + 4*b*c^2*( 
2*c*d^2*(d - 3*e*x) + 5*a*e^2*(d - e*x)) + 2*b^2*c*e*(-11*a*e^2 + c*d*(-6* 
d + e*x))))/(3*(b^2 - 4*a*c)^2*(c*d^2 + e*(-(b*d) + a*e))^2*Sqrt[a + x*(b 
+ c*x)]) - (e^4*ArcTanh[(-(b*d) + 2*a*e - 2*c*d*x + b*e*x)/(2*Sqrt[c*d^2 + 
 e*(-(b*d) + a*e)]*Sqrt[a + x*(b + c*x)])])/(c*d^2 + e*(-(b*d) + a*e))^(5/ 
2)
 

Rubi [A] (verified)

Time = 0.54 (sec) , antiderivative size = 350, normalized size of antiderivative = 1.14, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {1165, 27, 1235, 27, 1154, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(d+e x) \left (a+b x+c x^2\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 1165

\(\displaystyle -\frac {2 \int \frac {8 c^2 d^2-3 b^2 e^2-4 c e (b d-3 a e)+4 c e (2 c d-b e) x}{2 (d+e x) \left (c x^2+b x+a\right )^{3/2}}dx}{3 \left (b^2-4 a c\right ) \left (a e^2-b d e+c d^2\right )}-\frac {2 \left (2 a c e+b^2 (-e)+c x (2 c d-b e)+b c d\right )}{3 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^{3/2} \left (a e^2-b d e+c d^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {8 c^2 d^2-3 b^2 e^2-4 c e (b d-3 a e)+4 c e (2 c d-b e) x}{(d+e x) \left (c x^2+b x+a\right )^{3/2}}dx}{3 \left (b^2-4 a c\right ) \left (a e^2-b d e+c d^2\right )}-\frac {2 \left (2 a c e+b^2 (-e)+c x (2 c d-b e)+b c d\right )}{3 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^{3/2} \left (a e^2-b d e+c d^2\right )}\)

\(\Big \downarrow \) 1235

\(\displaystyle -\frac {\frac {2 \left (-c x (2 c d-b e) \left (-4 c e (2 b d-5 a e)-3 b^2 e^2+8 c^2 d^2\right )-\left (2 a c e+b^2 (-e)+b c d\right ) \left (-4 c e (b d-3 a e)-3 b^2 e^2+8 c^2 d^2\right )+4 a c e (2 c d-b e)^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x+c x^2} \left (a e^2-b d e+c d^2\right )}-\frac {2 \int \frac {3 \left (b^2-4 a c\right )^2 e^4}{2 (d+e x) \sqrt {c x^2+b x+a}}dx}{\left (b^2-4 a c\right ) \left (a e^2-b d e+c d^2\right )}}{3 \left (b^2-4 a c\right ) \left (a e^2-b d e+c d^2\right )}-\frac {2 \left (2 a c e+b^2 (-e)+c x (2 c d-b e)+b c d\right )}{3 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^{3/2} \left (a e^2-b d e+c d^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {2 \left (-c x (2 c d-b e) \left (-4 c e (2 b d-5 a e)-3 b^2 e^2+8 c^2 d^2\right )-\left (2 a c e+b^2 (-e)+b c d\right ) \left (-4 c e (b d-3 a e)-3 b^2 e^2+8 c^2 d^2\right )+4 a c e (2 c d-b e)^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x+c x^2} \left (a e^2-b d e+c d^2\right )}-\frac {3 e^4 \left (b^2-4 a c\right ) \int \frac {1}{(d+e x) \sqrt {c x^2+b x+a}}dx}{a e^2-b d e+c d^2}}{3 \left (b^2-4 a c\right ) \left (a e^2-b d e+c d^2\right )}-\frac {2 \left (2 a c e+b^2 (-e)+c x (2 c d-b e)+b c d\right )}{3 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^{3/2} \left (a e^2-b d e+c d^2\right )}\)

\(\Big \downarrow \) 1154

\(\displaystyle -\frac {\frac {6 e^4 \left (b^2-4 a c\right ) \int \frac {1}{4 \left (c d^2-b e d+a e^2\right )-\frac {(b d-2 a e+(2 c d-b e) x)^2}{c x^2+b x+a}}d\left (-\frac {b d-2 a e+(2 c d-b e) x}{\sqrt {c x^2+b x+a}}\right )}{a e^2-b d e+c d^2}+\frac {2 \left (-c x (2 c d-b e) \left (-4 c e (2 b d-5 a e)-3 b^2 e^2+8 c^2 d^2\right )-\left (2 a c e+b^2 (-e)+b c d\right ) \left (-4 c e (b d-3 a e)-3 b^2 e^2+8 c^2 d^2\right )+4 a c e (2 c d-b e)^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x+c x^2} \left (a e^2-b d e+c d^2\right )}}{3 \left (b^2-4 a c\right ) \left (a e^2-b d e+c d^2\right )}-\frac {2 \left (2 a c e+b^2 (-e)+c x (2 c d-b e)+b c d\right )}{3 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^{3/2} \left (a e^2-b d e+c d^2\right )}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {\frac {2 \left (-c x (2 c d-b e) \left (-4 c e (2 b d-5 a e)-3 b^2 e^2+8 c^2 d^2\right )-\left (2 a c e+b^2 (-e)+b c d\right ) \left (-4 c e (b d-3 a e)-3 b^2 e^2+8 c^2 d^2\right )+4 a c e (2 c d-b e)^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x+c x^2} \left (a e^2-b d e+c d^2\right )}-\frac {3 e^4 \left (b^2-4 a c\right ) \text {arctanh}\left (\frac {-2 a e+x (2 c d-b e)+b d}{2 \sqrt {a+b x+c x^2} \sqrt {a e^2-b d e+c d^2}}\right )}{\left (a e^2-b d e+c d^2\right )^{3/2}}}{3 \left (b^2-4 a c\right ) \left (a e^2-b d e+c d^2\right )}-\frac {2 \left (2 a c e+b^2 (-e)+c x (2 c d-b e)+b c d\right )}{3 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^{3/2} \left (a e^2-b d e+c d^2\right )}\)

Input:

Int[1/((d + e*x)*(a + b*x + c*x^2)^(5/2)),x]
 

Output:

(-2*(b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x))/(3*(b^2 - 4*a*c)*(c*d^2 
 - b*d*e + a*e^2)*(a + b*x + c*x^2)^(3/2)) - ((2*(4*a*c*e*(2*c*d - b*e)^2 
- (b*c*d - b^2*e + 2*a*c*e)*(8*c^2*d^2 - 3*b^2*e^2 - 4*c*e*(b*d - 3*a*e)) 
- c*(2*c*d - b*e)*(8*c^2*d^2 - 3*b^2*e^2 - 4*c*e*(2*b*d - 5*a*e))*x))/((b^ 
2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)*Sqrt[a + b*x + c*x^2]) - (3*(b^2 - 4*a* 
c)*e^4*ArcTanh[(b*d - 2*a*e + (2*c*d - b*e)*x)/(2*Sqrt[c*d^2 - b*d*e + a*e 
^2]*Sqrt[a + b*x + c*x^2])])/(c*d^2 - b*d*e + a*e^2)^(3/2))/(3*(b^2 - 4*a* 
c)*(c*d^2 - b*d*e + a*e^2))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1154
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Sym 
bol] :> Simp[-2   Subst[Int[1/(4*c*d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, ( 
2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c 
, d, e}, x]
 

rule 1165
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[(d + e*x)^(m + 1)*(b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e) 
*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^ 
2))), x] + Simp[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))   Int[(d 
+ e*x)^m*Simp[b*c*d*e*(2*p - m + 2) + b^2*e^2*(m + p + 2) - 2*c^2*d^2*(2*p 
+ 3) - 2*a*c*e^2*(m + 2*p + 3) - c*e*(2*c*d - b*e)*(m + 2*p + 4)*x, x]*(a + 
 b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && LtQ[p, -1] 
 && IntQuadraticQ[a, b, c, d, e, m, p, x]
 

rule 1235
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(f*(b*c*d - b^2*e + 2 
*a*c*e) - a*g*(2*c*d - b*e) + c*(f*(2*c*d - b*e) - g*(b*d - 2*a*e))*x)*((a 
+ b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))), x] 
 + Simp[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))   Int[(d + e*x)^m 
*(a + b*x + c*x^2)^(p + 1)*Simp[f*(b*c*d*e*(2*p - m + 2) + b^2*e^2*(p + m + 
 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - g*(a*e*(b*e - 2*c*d* 
m + b*e*m) - b*d*(3*c*d - b*e + 2*c*d*p - b*e*p)) + c*e*(g*(b*d - 2*a*e) - 
f*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, 
 m}, x] && LtQ[p, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p] 
)
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(765\) vs. \(2(293)=586\).

Time = 1.44 (sec) , antiderivative size = 766, normalized size of antiderivative = 2.50

method result size
default \(\frac {\frac {e^{2}}{3 \left (a \,e^{2}-b d e +c \,d^{2}\right ) \left (c \left (x +\frac {d}{e}\right )^{2}+\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+\frac {a \,e^{2}-b d e +c \,d^{2}}{e^{2}}\right )^{\frac {3}{2}}}-\frac {\left (b e -2 c d \right ) e \left (\frac {\frac {4 c \left (x +\frac {d}{e}\right )}{3}+\frac {2 \left (b e -2 c d \right )}{3 e}}{\left (\frac {4 c \left (a \,e^{2}-b d e +c \,d^{2}\right )}{e^{2}}-\frac {\left (b e -2 c d \right )^{2}}{e^{2}}\right ) \left (c \left (x +\frac {d}{e}\right )^{2}+\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+\frac {a \,e^{2}-b d e +c \,d^{2}}{e^{2}}\right )^{\frac {3}{2}}}+\frac {16 c \left (2 c \left (x +\frac {d}{e}\right )+\frac {b e -2 c d}{e}\right )}{3 {\left (\frac {4 c \left (a \,e^{2}-b d e +c \,d^{2}\right )}{e^{2}}-\frac {\left (b e -2 c d \right )^{2}}{e^{2}}\right )}^{2} \sqrt {c \left (x +\frac {d}{e}\right )^{2}+\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+\frac {a \,e^{2}-b d e +c \,d^{2}}{e^{2}}}}\right )}{2 \left (a \,e^{2}-b d e +c \,d^{2}\right )}+\frac {e^{2} \left (\frac {e^{2}}{\left (a \,e^{2}-b d e +c \,d^{2}\right ) \sqrt {c \left (x +\frac {d}{e}\right )^{2}+\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+\frac {a \,e^{2}-b d e +c \,d^{2}}{e^{2}}}}-\frac {\left (b e -2 c d \right ) e \left (2 c \left (x +\frac {d}{e}\right )+\frac {b e -2 c d}{e}\right )}{\left (a \,e^{2}-b d e +c \,d^{2}\right ) \left (\frac {4 c \left (a \,e^{2}-b d e +c \,d^{2}\right )}{e^{2}}-\frac {\left (b e -2 c d \right )^{2}}{e^{2}}\right ) \sqrt {c \left (x +\frac {d}{e}\right )^{2}+\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+\frac {a \,e^{2}-b d e +c \,d^{2}}{e^{2}}}}-\frac {e^{2} \ln \left (\frac {\frac {2 a \,e^{2}-2 b d e +2 c \,d^{2}}{e^{2}}+\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {a \,e^{2}-b d e +c \,d^{2}}{e^{2}}}\, \sqrt {c \left (x +\frac {d}{e}\right )^{2}+\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+\frac {a \,e^{2}-b d e +c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{\left (a \,e^{2}-b d e +c \,d^{2}\right ) \sqrt {\frac {a \,e^{2}-b d e +c \,d^{2}}{e^{2}}}}\right )}{a \,e^{2}-b d e +c \,d^{2}}}{e}\) \(766\)

Input:

int(1/(e*x+d)/(c*x^2+b*x+a)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

1/e*(1/3/(a*e^2-b*d*e+c*d^2)*e^2/(c*(x+d/e)^2+(b*e-2*c*d)/e*(x+d/e)+(a*e^2 
-b*d*e+c*d^2)/e^2)^(3/2)-1/2*(b*e-2*c*d)*e/(a*e^2-b*d*e+c*d^2)*(2/3*(2*c*( 
x+d/e)+(b*e-2*c*d)/e)/(4*c*(a*e^2-b*d*e+c*d^2)/e^2-(b*e-2*c*d)^2/e^2)/(c*( 
x+d/e)^2+(b*e-2*c*d)/e*(x+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(3/2)+16/3*c/(4*c* 
(a*e^2-b*d*e+c*d^2)/e^2-(b*e-2*c*d)^2/e^2)^2*(2*c*(x+d/e)+(b*e-2*c*d)/e)/( 
c*(x+d/e)^2+(b*e-2*c*d)/e*(x+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))+1/(a*e^2 
-b*d*e+c*d^2)*e^2*(1/(a*e^2-b*d*e+c*d^2)*e^2/(c*(x+d/e)^2+(b*e-2*c*d)/e*(x 
+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)-(b*e-2*c*d)*e/(a*e^2-b*d*e+c*d^2)*(2* 
c*(x+d/e)+(b*e-2*c*d)/e)/(4*c*(a*e^2-b*d*e+c*d^2)/e^2-(b*e-2*c*d)^2/e^2)/( 
c*(x+d/e)^2+(b*e-2*c*d)/e*(x+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)-1/(a*e^2- 
b*d*e+c*d^2)*e^2/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2) 
/e^2+(b*e-2*c*d)/e*(x+d/e)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*(c*(x+d/e)^2+ 
(b*e-2*c*d)/e*(x+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x+d/e))))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2285 vs. \(2 (292) = 584\).

Time = 1.36 (sec) , antiderivative size = 4612, normalized size of antiderivative = 15.02 \[ \int \frac {1}{(d+e x) \left (a+b x+c x^2\right )^{5/2}} \, dx=\text {Too large to display} \] Input:

integrate(1/(e*x+d)/(c*x^2+b*x+a)^(5/2),x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F]

\[ \int \frac {1}{(d+e x) \left (a+b x+c x^2\right )^{5/2}} \, dx=\int \frac {1}{\left (d + e x\right ) \left (a + b x + c x^{2}\right )^{\frac {5}{2}}}\, dx \] Input:

integrate(1/(e*x+d)/(c*x**2+b*x+a)**(5/2),x)
 

Output:

Integral(1/((d + e*x)*(a + b*x + c*x**2)**(5/2)), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{(d+e x) \left (a+b x+c x^2\right )^{5/2}} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(1/(e*x+d)/(c*x^2+b*x+a)^(5/2),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(a*e^2-b*d*e>0)', see `assume?` f 
or more de
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 8447 vs. \(2 (292) = 584\).

Time = 0.50 (sec) , antiderivative size = 8447, normalized size of antiderivative = 27.51 \[ \int \frac {1}{(d+e x) \left (a+b x+c x^2\right )^{5/2}} \, dx=\text {Too large to display} \] Input:

integrate(1/(e*x+d)/(c*x^2+b*x+a)^(5/2),x, algorithm="giac")
 

Output:

2*e^4*arctan(-((sqrt(c)*x - sqrt(c*x^2 + b*x + a))*e + sqrt(c)*d)/sqrt(-c* 
d^2 + b*d*e - a*e^2))/((c^2*d^4 - 2*b*c*d^3*e + b^2*d^2*e^2 + 2*a*c*d^2*e^ 
2 - 2*a*b*d*e^3 + a^2*e^4)*sqrt(-c*d^2 + b*d*e - a*e^2)) + 2/3*((((16*c^11 
*d^15 - 120*b*c^10*d^14*e + 386*b^2*c^9*d^13*e^2 + 136*a*c^10*d^13*e^2 - 6 
89*b^3*c^8*d^12*e^3 - 884*a*b*c^9*d^12*e^3 + 732*b^4*c^7*d^11*e^4 + 2412*a 
*b^2*c^8*d^11*e^4 + 480*a^2*c^9*d^11*e^4 - 451*b^5*c^6*d^10*e^5 - 3542*a*b 
^3*c^7*d^10*e^5 - 2640*a^2*b*c^8*d^10*e^5 + 130*b^6*c^5*d^9*e^6 + 2950*a*b 
^4*c^6*d^9*e^6 + 5910*a^2*b^2*c^7*d^9*e^6 + 920*a^3*c^8*d^9*e^6 + 9*b^7*c^ 
4*d^8*e^7 - 1296*a*b^5*c^5*d^8*e^7 - 6795*a^2*b^3*c^6*d^8*e^7 - 4140*a^3*b 
*c^7*d^8*e^7 - 16*b^8*c^3*d^7*e^8 + 184*a*b^6*c^4*d^7*e^8 + 4080*a^2*b^4*c 
^5*d^7*e^8 + 7240*a^3*b^2*c^6*d^7*e^8 + 1040*a^4*c^7*d^7*e^8 + 3*b^9*c^2*d 
^6*e^9 + 58*a*b^7*c^3*d^6*e^9 - 1050*a^2*b^5*c^4*d^6*e^9 - 6020*a^3*b^3*c^ 
5*d^6*e^9 - 3640*a^4*b*c^6*d^6*e^9 - 18*a*b^8*c^2*d^5*e^10 - 30*a^2*b^6*c^ 
3*d^5*e^10 + 2220*a^3*b^4*c^4*d^5*e^10 + 4590*a^4*b^2*c^5*d^5*e^10 + 696*a 
^5*c^6*d^5*e^10 + 45*a^2*b^7*c^2*d^4*e^11 - 160*a^3*b^5*c^3*d^4*e^11 - 237 
5*a^4*b^3*c^4*d^4*e^11 - 1740*a^5*b*c^5*d^4*e^11 - 60*a^3*b^6*c^2*d^3*e^12 
 + 340*a^4*b^4*c^3*d^3*e^12 + 1356*a^5*b^2*c^4*d^3*e^12 + 256*a^6*c^5*d^3* 
e^12 + 45*a^4*b^5*c^2*d^2*e^13 - 294*a^5*b^3*c^3*d^2*e^13 - 384*a^6*b*c^4* 
d^2*e^13 - 18*a^5*b^4*c^2*d*e^14 + 122*a^6*b^2*c^3*d*e^14 + 40*a^7*c^4*d*e 
^14 + 3*a^6*b^3*c^2*e^15 - 20*a^7*b*c^3*e^15)*x/(b^4*c^8*d^16 - 8*a*b^2...
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(d+e x) \left (a+b x+c x^2\right )^{5/2}} \, dx=\int \frac {1}{\left (d+e\,x\right )\,{\left (c\,x^2+b\,x+a\right )}^{5/2}} \,d x \] Input:

int(1/((d + e*x)*(a + b*x + c*x^2)^(5/2)),x)
 

Output:

int(1/((d + e*x)*(a + b*x + c*x^2)^(5/2)), x)
 

Reduce [F]

\[ \int \frac {1}{(d+e x) \left (a+b x+c x^2\right )^{5/2}} \, dx=\int \frac {1}{\left (e x +d \right ) \left (c \,x^{2}+b x +a \right )^{\frac {5}{2}}}d x \] Input:

int(1/(e*x+d)/(c*x^2+b*x+a)^(5/2),x)
 

Output:

int(1/(e*x+d)/(c*x^2+b*x+a)^(5/2),x)