\(\int \frac {x \sqrt {d+e x}}{a+b x+c x^2} \, dx\) [61]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 287 \[ \int \frac {x \sqrt {d+e x}}{a+b x+c x^2} \, dx=\frac {2 \sqrt {d+e x}}{c}+\frac {\sqrt {2} \left (b c d-b^2 e+2 a c e-\sqrt {b^2-4 a c} (c d-b e)\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x}}{\sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}}\right )}{c^{3/2} \sqrt {b^2-4 a c} \sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}}-\frac {\sqrt {2} \left (b c d-b^2 e+2 a c e+\sqrt {b^2-4 a c} (c d-b e)\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x}}{\sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}}\right )}{c^{3/2} \sqrt {b^2-4 a c} \sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}} \] Output:

2*(e*x+d)^(1/2)/c+2^(1/2)*(b*c*d-b^2*e+2*a*c*e-(-4*a*c+b^2)^(1/2)*(-b*e+c* 
d))*arctanh(2^(1/2)*c^(1/2)*(e*x+d)^(1/2)/(2*c*d-(b-(-4*a*c+b^2)^(1/2))*e) 
^(1/2))/c^(3/2)/(-4*a*c+b^2)^(1/2)/(2*c*d-(b-(-4*a*c+b^2)^(1/2))*e)^(1/2)- 
2^(1/2)*(b*c*d-b^2*e+2*a*c*e+(-4*a*c+b^2)^(1/2)*(-b*e+c*d))*arctanh(2^(1/2 
)*c^(1/2)*(e*x+d)^(1/2)/(2*c*d-(b+(-4*a*c+b^2)^(1/2))*e)^(1/2))/c^(3/2)/(- 
4*a*c+b^2)^(1/2)/(2*c*d-(b+(-4*a*c+b^2)^(1/2))*e)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.54 (sec) , antiderivative size = 341, normalized size of antiderivative = 1.19 \[ \int \frac {x \sqrt {d+e x}}{a+b x+c x^2} \, dx=\frac {2 \sqrt {c} \sqrt {d+e x}-\frac {\left (-i b c d-c \sqrt {-b^2+4 a c} d+i b^2 e-2 i a c e+b \sqrt {-b^2+4 a c} e\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x}}{\sqrt {-2 c d+b e-i \sqrt {-b^2+4 a c} e}}\right )}{\sqrt {-\frac {b^2}{2}+2 a c} \sqrt {-2 c d+\left (b-i \sqrt {-b^2+4 a c}\right ) e}}-\frac {\left (i b c d-c \sqrt {-b^2+4 a c} d-i b^2 e+2 i a c e+b \sqrt {-b^2+4 a c} e\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x}}{\sqrt {-2 c d+b e+i \sqrt {-b^2+4 a c} e}}\right )}{\sqrt {-\frac {b^2}{2}+2 a c} \sqrt {-2 c d+\left (b+i \sqrt {-b^2+4 a c}\right ) e}}}{c^{3/2}} \] Input:

Integrate[(x*Sqrt[d + e*x])/(a + b*x + c*x^2),x]
 

Output:

(2*Sqrt[c]*Sqrt[d + e*x] - (((-I)*b*c*d - c*Sqrt[-b^2 + 4*a*c]*d + I*b^2*e 
 - (2*I)*a*c*e + b*Sqrt[-b^2 + 4*a*c]*e)*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[d + 
e*x])/Sqrt[-2*c*d + b*e - I*Sqrt[-b^2 + 4*a*c]*e]])/(Sqrt[-1/2*b^2 + 2*a*c 
]*Sqrt[-2*c*d + (b - I*Sqrt[-b^2 + 4*a*c])*e]) - ((I*b*c*d - c*Sqrt[-b^2 + 
 4*a*c]*d - I*b^2*e + (2*I)*a*c*e + b*Sqrt[-b^2 + 4*a*c]*e)*ArcTan[(Sqrt[2 
]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[-2*c*d + b*e + I*Sqrt[-b^2 + 4*a*c]*e]])/(Sq 
rt[-1/2*b^2 + 2*a*c]*Sqrt[-2*c*d + (b + I*Sqrt[-b^2 + 4*a*c])*e]))/c^(3/2)
 

Rubi [A] (verified)

Time = 1.08 (sec) , antiderivative size = 293, normalized size of antiderivative = 1.02, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {1196, 25, 1197, 1480, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x \sqrt {d+e x}}{a+b x+c x^2} \, dx\)

\(\Big \downarrow \) 1196

\(\displaystyle \frac {\int -\frac {a e-(c d-b e) x}{\sqrt {d+e x} \left (c x^2+b x+a\right )}dx}{c}+\frac {2 \sqrt {d+e x}}{c}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \sqrt {d+e x}}{c}-\frac {\int \frac {a e-(c d-b e) x}{\sqrt {d+e x} \left (c x^2+b x+a\right )}dx}{c}\)

\(\Big \downarrow \) 1197

\(\displaystyle \frac {2 \sqrt {d+e x}}{c}-\frac {2 \int \frac {c d^2-b e d+a e^2-(c d-b e) (d+e x)}{c d^2-b e d+a e^2+c (d+e x)^2-(2 c d-b e) (d+e x)}d\sqrt {d+e x}}{c}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {2 \sqrt {d+e x}}{c}-\frac {2 \left (\frac {\left (-\sqrt {b^2-4 a c} (c d-b e)+2 a c e+b^2 (-e)+b c d\right ) \int \frac {1}{\frac {1}{2} \left (\left (b-\sqrt {b^2-4 a c}\right ) e-2 c d\right )+c (d+e x)}d\sqrt {d+e x}}{2 \sqrt {b^2-4 a c}}-\frac {\left (\sqrt {b^2-4 a c} (c d-b e)+2 a c e+b^2 (-e)+b c d\right ) \int \frac {1}{\frac {1}{2} \left (\left (b+\sqrt {b^2-4 a c}\right ) e-2 c d\right )+c (d+e x)}d\sqrt {d+e x}}{2 \sqrt {b^2-4 a c}}\right )}{c}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {2 \sqrt {d+e x}}{c}-\frac {2 \left (\frac {\left (\sqrt {b^2-4 a c} (c d-b e)+2 a c e+b^2 (-e)+b c d\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x}}{\sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b^2-4 a c} \sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}-\frac {\left (-\sqrt {b^2-4 a c} (c d-b e)+2 a c e+b^2 (-e)+b c d\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x}}{\sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}}\right )}{\sqrt {2} \sqrt {c} \sqrt {b^2-4 a c} \sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}}\right )}{c}\)

Input:

Int[(x*Sqrt[d + e*x])/(a + b*x + c*x^2),x]
 

Output:

(2*Sqrt[d + e*x])/c - (2*(-(((b*c*d - b^2*e + 2*a*c*e - Sqrt[b^2 - 4*a*c]* 
(c*d - b*e))*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b - Sqr 
t[b^2 - 4*a*c])*e]])/(Sqrt[2]*Sqrt[c]*Sqrt[b^2 - 4*a*c]*Sqrt[2*c*d - (b - 
Sqrt[b^2 - 4*a*c])*e])) + ((b*c*d - b^2*e + 2*a*c*e + Sqrt[b^2 - 4*a*c]*(c 
*d - b*e))*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b + Sqrt[ 
b^2 - 4*a*c])*e]])/(Sqrt[2]*Sqrt[c]*Sqrt[b^2 - 4*a*c]*Sqrt[2*c*d - (b + Sq 
rt[b^2 - 4*a*c])*e])))/c
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 1196
Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + 
(c_.)*(x_)^2), x_Symbol] :> Simp[g*((d + e*x)^m/(c*m)), x] + Simp[1/c   Int 
[(d + e*x)^(m - 1)*(Simp[c*d*f - a*e*g + (g*c*d - b*e*g + c*e*f)*x, x]/(a + 
 b*x + c*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && FractionQ[m] & 
& GtQ[m, 0]
 

rule 1197
Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)), x_Symbol] :> Simp[2   Subst[Int[(e*f - d*g + g*x^2)/(c*d^2 - 
b*d*e + a*e^2 - (2*c*d - b*e)*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; Fr 
eeQ[{a, b, c, d, e, f, g}, x]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 
Maple [A] (verified)

Time = 1.55 (sec) , antiderivative size = 325, normalized size of antiderivative = 1.13

method result size
pseudoelliptic \(\frac {2 \sqrt {e x +d}+\frac {\left (2 a c \,e^{2}-b^{2} e^{2}+b c d e -\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, b e +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, c d \right ) \sqrt {2}\, \arctan \left (\frac {\sqrt {e x +d}\, c \sqrt {2}}{\sqrt {\left (b e -2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}\right )}{\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, \sqrt {\left (b e -2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}+\frac {\left (2 a c \,e^{2}-b^{2} e^{2}+b c d e +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, b e -\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, c d \right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {e x +d}\, c \sqrt {2}}{\sqrt {\left (-b e +2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}\right )}{\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, \sqrt {\left (-b e +2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}}{c}\) \(325\)
derivativedivides \(\frac {2 \sqrt {e x +d}}{c}+\frac {\left (2 a c \,e^{2}-b^{2} e^{2}+b c d e -\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, b e +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, c d \right ) \sqrt {2}\, \arctan \left (\frac {\sqrt {e x +d}\, c \sqrt {2}}{\sqrt {\left (b e -2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}\right )}{c \sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, \sqrt {\left (b e -2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}-\frac {\left (-2 a c \,e^{2}+b^{2} e^{2}-b c d e -\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, b e +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, c d \right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {e x +d}\, c \sqrt {2}}{\sqrt {\left (-b e +2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}\right )}{c \sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, \sqrt {\left (-b e +2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}\) \(331\)
default \(\frac {2 \sqrt {e x +d}}{c}+\frac {\left (2 a c \,e^{2}-b^{2} e^{2}+b c d e -\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, b e +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, c d \right ) \sqrt {2}\, \arctan \left (\frac {\sqrt {e x +d}\, c \sqrt {2}}{\sqrt {\left (b e -2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}\right )}{c \sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, \sqrt {\left (b e -2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}-\frac {\left (-2 a c \,e^{2}+b^{2} e^{2}-b c d e -\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, b e +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, c d \right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {e x +d}\, c \sqrt {2}}{\sqrt {\left (-b e +2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}\right )}{c \sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, \sqrt {\left (-b e +2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}\) \(331\)
risch \(\frac {2 \sqrt {e x +d}}{c}+\frac {\left (2 a c \,e^{2}-b^{2} e^{2}+b c d e +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, b e -\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, c d \right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {e x +d}\, c \sqrt {2}}{\sqrt {\left (-b e +2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}\right )}{c \sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, \sqrt {\left (-b e +2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}-\frac {\left (-2 a c \,e^{2}+b^{2} e^{2}-b c d e +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, b e -\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, c d \right ) \sqrt {2}\, \arctan \left (\frac {\sqrt {e x +d}\, c \sqrt {2}}{\sqrt {\left (b e -2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}\right )}{c \sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, \sqrt {\left (b e -2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}\) \(331\)

Input:

int(x*(e*x+d)^(1/2)/(c*x^2+b*x+a),x,method=_RETURNVERBOSE)
 

Output:

1/c*(2*(e*x+d)^(1/2)+(2*a*c*e^2-b^2*e^2+b*c*d*e-(-e^2*(4*a*c-b^2))^(1/2)*b 
*e+(-e^2*(4*a*c-b^2))^(1/2)*c*d)/(-e^2*(4*a*c-b^2))^(1/2)*2^(1/2)/((b*e-2* 
c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctan((e*x+d)^(1/2)*c*2^(1/2)/((b* 
e-2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))+(2*a*c*e^2-b^2*e^2+b*c*d*e+(-e 
^2*(4*a*c-b^2))^(1/2)*b*e-(-e^2*(4*a*c-b^2))^(1/2)*c*d)/(-e^2*(4*a*c-b^2)) 
^(1/2)*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctanh((e* 
x+d)^(1/2)*c*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1721 vs. \(2 (241) = 482\).

Time = 0.11 (sec) , antiderivative size = 1721, normalized size of antiderivative = 6.00 \[ \int \frac {x \sqrt {d+e x}}{a+b x+c x^2} \, dx=\text {Too large to display} \] Input:

integrate(x*(e*x+d)^(1/2)/(c*x^2+b*x+a),x, algorithm="fricas")
 

Output:

1/2*(sqrt(2)*c*sqrt(((b^2*c - 2*a*c^2)*d - (b^3 - 3*a*b*c)*e + (b^2*c^3 - 
4*a*c^4)*sqrt((b^2*c^2*d^2 - 2*(b^3*c - a*b*c^2)*d*e + (b^4 - 2*a*b^2*c + 
a^2*c^2)*e^2)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4))*log(sqrt(2)*((b^3 
*c - 4*a*b*c^2)*d - (b^4 - 5*a*b^2*c + 4*a^2*c^2)*e - (b^3*c^3 - 4*a*b*c^4 
)*sqrt((b^2*c^2*d^2 - 2*(b^3*c - a*b*c^2)*d*e + (b^4 - 2*a*b^2*c + a^2*c^2 
)*e^2)/(b^2*c^6 - 4*a*c^7)))*sqrt(((b^2*c - 2*a*c^2)*d - (b^3 - 3*a*b*c)*e 
 + (b^2*c^3 - 4*a*c^4)*sqrt((b^2*c^2*d^2 - 2*(b^3*c - a*b*c^2)*d*e + (b^4 
- 2*a*b^2*c + a^2*c^2)*e^2)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4)) + 4 
*(a*b*c*d - (a*b^2 - a^2*c)*e)*sqrt(e*x + d)) - sqrt(2)*c*sqrt(((b^2*c - 2 
*a*c^2)*d - (b^3 - 3*a*b*c)*e + (b^2*c^3 - 4*a*c^4)*sqrt((b^2*c^2*d^2 - 2* 
(b^3*c - a*b*c^2)*d*e + (b^4 - 2*a*b^2*c + a^2*c^2)*e^2)/(b^2*c^6 - 4*a*c^ 
7)))/(b^2*c^3 - 4*a*c^4))*log(-sqrt(2)*((b^3*c - 4*a*b*c^2)*d - (b^4 - 5*a 
*b^2*c + 4*a^2*c^2)*e - (b^3*c^3 - 4*a*b*c^4)*sqrt((b^2*c^2*d^2 - 2*(b^3*c 
 - a*b*c^2)*d*e + (b^4 - 2*a*b^2*c + a^2*c^2)*e^2)/(b^2*c^6 - 4*a*c^7)))*s 
qrt(((b^2*c - 2*a*c^2)*d - (b^3 - 3*a*b*c)*e + (b^2*c^3 - 4*a*c^4)*sqrt((b 
^2*c^2*d^2 - 2*(b^3*c - a*b*c^2)*d*e + (b^4 - 2*a*b^2*c + a^2*c^2)*e^2)/(b 
^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4)) + 4*(a*b*c*d - (a*b^2 - a^2*c)*e) 
*sqrt(e*x + d)) + sqrt(2)*c*sqrt(((b^2*c - 2*a*c^2)*d - (b^3 - 3*a*b*c)*e 
- (b^2*c^3 - 4*a*c^4)*sqrt((b^2*c^2*d^2 - 2*(b^3*c - a*b*c^2)*d*e + (b^4 - 
 2*a*b^2*c + a^2*c^2)*e^2)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4))*l...
 

Sympy [F]

\[ \int \frac {x \sqrt {d+e x}}{a+b x+c x^2} \, dx=\int \frac {x \sqrt {d + e x}}{a + b x + c x^{2}}\, dx \] Input:

integrate(x*(e*x+d)**(1/2)/(c*x**2+b*x+a),x)
 

Output:

Integral(x*sqrt(d + e*x)/(a + b*x + c*x**2), x)
 

Maxima [F]

\[ \int \frac {x \sqrt {d+e x}}{a+b x+c x^2} \, dx=\int { \frac {\sqrt {e x + d} x}{c x^{2} + b x + a} \,d x } \] Input:

integrate(x*(e*x+d)^(1/2)/(c*x^2+b*x+a),x, algorithm="maxima")
 

Output:

integrate(sqrt(e*x + d)*x/(c*x^2 + b*x + a), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 758 vs. \(2 (241) = 482\).

Time = 0.30 (sec) , antiderivative size = 758, normalized size of antiderivative = 2.64 \[ \int \frac {x \sqrt {d+e x}}{a+b x+c x^2} \, dx =\text {Too large to display} \] Input:

integrate(x*(e*x+d)^(1/2)/(c*x^2+b*x+a),x, algorithm="giac")
 

Output:

2*sqrt(e*x + d)/c + 1/4*(sqrt(-4*c^2*d + 2*(b*c - sqrt(b^2 - 4*a*c)*c)*e)* 
((b^2*c - 4*a*c^2)*d - (b^3 - 4*a*b*c)*e)*c^2*e^2 - 2*(sqrt(b^2 - 4*a*c)*c 
^3*d^2 - sqrt(b^2 - 4*a*c)*b*c^2*d*e + sqrt(b^2 - 4*a*c)*a*c^2*e^2)*sqrt(- 
4*c^2*d + 2*(b*c - sqrt(b^2 - 4*a*c)*c)*e)*abs(c)*abs(e) + (2*b*c^4*d^2*e 
- (3*b^2*c^3 - 4*a*c^4)*d*e^2 + (b^3*c^2 - 2*a*b*c^3)*e^3)*sqrt(-4*c^2*d + 
 2*(b*c - sqrt(b^2 - 4*a*c)*c)*e))*arctan(2*sqrt(1/2)*sqrt(e*x + d)/sqrt(- 
(2*c^2*d - b*c*e + sqrt(-4*(c^2*d^2 - b*c*d*e + a*c*e^2)*c^2 + (2*c^2*d - 
b*c*e)^2))/c^2))/((sqrt(b^2 - 4*a*c)*c^4*d^2 - sqrt(b^2 - 4*a*c)*b*c^3*d*e 
 + sqrt(b^2 - 4*a*c)*a*c^3*e^2)*c^2*abs(e)) - 1/4*(sqrt(-4*c^2*d + 2*(b*c 
+ sqrt(b^2 - 4*a*c)*c)*e)*((b^2*c - 4*a*c^2)*d - (b^3 - 4*a*b*c)*e)*c^2*e^ 
2 + 2*(sqrt(b^2 - 4*a*c)*c^3*d^2 - sqrt(b^2 - 4*a*c)*b*c^2*d*e + sqrt(b^2 
- 4*a*c)*a*c^2*e^2)*sqrt(-4*c^2*d + 2*(b*c + sqrt(b^2 - 4*a*c)*c)*e)*abs(c 
)*abs(e) + (2*b*c^4*d^2*e - (3*b^2*c^3 - 4*a*c^4)*d*e^2 + (b^3*c^2 - 2*a*b 
*c^3)*e^3)*sqrt(-4*c^2*d + 2*(b*c + sqrt(b^2 - 4*a*c)*c)*e))*arctan(2*sqrt 
(1/2)*sqrt(e*x + d)/sqrt(-(2*c^2*d - b*c*e - sqrt(-4*(c^2*d^2 - b*c*d*e + 
a*c*e^2)*c^2 + (2*c^2*d - b*c*e)^2))/c^2))/((sqrt(b^2 - 4*a*c)*c^4*d^2 - s 
qrt(b^2 - 4*a*c)*b*c^3*d*e + sqrt(b^2 - 4*a*c)*a*c^3*e^2)*c^2*abs(e))
 

Mupad [B] (verification not implemented)

Time = 12.10 (sec) , antiderivative size = 5664, normalized size of antiderivative = 19.74 \[ \int \frac {x \sqrt {d+e x}}{a+b x+c x^2} \, dx=\text {Too large to display} \] Input:

int((x*(d + e*x)^(1/2))/(a + b*x + c*x^2),x)
 

Output:

(2*(d + e*x)^(1/2))/c - atan(((((8*(4*a^2*c^3*e^4 - a*b^2*c^2*e^4 + 4*a*c^ 
4*d^2*e^2 + b^3*c^2*d*e^3 - b^2*c^3*d^2*e^2 - 4*a*b*c^3*d*e^3))/c - (8*(d 
+ e*x)^(1/2)*((8*a^2*c^3*d - b^5*e - b^2*e*(-(4*a*c - b^2)^3)^(1/2) + b^4* 
c*d + 7*a*b^3*c*e + a*c*e*(-(4*a*c - b^2)^3)^(1/2) + b*c*d*(-(4*a*c - b^2) 
^3)^(1/2) - 6*a*b^2*c^2*d - 12*a^2*b*c^2*e)/(2*(16*a^2*c^5 + b^4*c^3 - 8*a 
*b^2*c^4)))^(1/2)*(b^3*c^3*e^3 - 2*b^2*c^4*d*e^2 - 4*a*b*c^4*e^3 + 8*a*c^5 
*d*e^2))/c)*((8*a^2*c^3*d - b^5*e - b^2*e*(-(4*a*c - b^2)^3)^(1/2) + b^4*c 
*d + 7*a*b^3*c*e + a*c*e*(-(4*a*c - b^2)^3)^(1/2) + b*c*d*(-(4*a*c - b^2)^ 
3)^(1/2) - 6*a*b^2*c^2*d - 12*a^2*b*c^2*e)/(2*(16*a^2*c^5 + b^4*c^3 - 8*a* 
b^2*c^4)))^(1/2) - (8*(d + e*x)^(1/2)*(b^4*e^4 + 2*a^2*c^2*e^4 - 2*a*c^3*d 
^2*e^2 + b^2*c^2*d^2*e^2 - 4*a*b^2*c*e^4 - 2*b^3*c*d*e^3 + 6*a*b*c^2*d*e^3 
))/c)*((8*a^2*c^3*d - b^5*e - b^2*e*(-(4*a*c - b^2)^3)^(1/2) + b^4*c*d + 7 
*a*b^3*c*e + a*c*e*(-(4*a*c - b^2)^3)^(1/2) + b*c*d*(-(4*a*c - b^2)^3)^(1/ 
2) - 6*a*b^2*c^2*d - 12*a^2*b*c^2*e)/(2*(16*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^ 
4)))^(1/2)*1i - (((8*(4*a^2*c^3*e^4 - a*b^2*c^2*e^4 + 4*a*c^4*d^2*e^2 + b^ 
3*c^2*d*e^3 - b^2*c^3*d^2*e^2 - 4*a*b*c^3*d*e^3))/c + (8*(d + e*x)^(1/2)*( 
(8*a^2*c^3*d - b^5*e - b^2*e*(-(4*a*c - b^2)^3)^(1/2) + b^4*c*d + 7*a*b^3* 
c*e + a*c*e*(-(4*a*c - b^2)^3)^(1/2) + b*c*d*(-(4*a*c - b^2)^3)^(1/2) - 6* 
a*b^2*c^2*d - 12*a^2*b*c^2*e)/(2*(16*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1 
/2)*(b^3*c^3*e^3 - 2*b^2*c^4*d*e^2 - 4*a*b*c^4*e^3 + 8*a*c^5*d*e^2))/c)...
 

Reduce [B] (verification not implemented)

Time = 6.90 (sec) , antiderivative size = 1844, normalized size of antiderivative = 6.43 \[ \int \frac {x \sqrt {d+e x}}{a+b x+c x^2} \, dx =\text {Too large to display} \] Input:

int(x*(e*x+d)^(1/2)/(c*x^2+b*x+a),x)
 

Output:

(2*sqrt(2*sqrt(c)*sqrt(a*e**2 - b*d*e + c*d**2) + b*e - 2*c*d)*sqrt(a*e**2 
 - b*d*e + c*d**2)*atan((sqrt(2*sqrt(c)*sqrt(a*e**2 - b*d*e + c*d**2) - b* 
e + 2*c*d) - 2*sqrt(c)*sqrt(d + e*x))/sqrt(2*sqrt(c)*sqrt(a*e**2 - b*d*e + 
 c*d**2) + b*e - 2*c*d))*b*c + 4*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a*e**2 - b*d* 
e + c*d**2) + b*e - 2*c*d)*atan((sqrt(2*sqrt(c)*sqrt(a*e**2 - b*d*e + c*d* 
*2) - b*e + 2*c*d) - 2*sqrt(c)*sqrt(d + e*x))/sqrt(2*sqrt(c)*sqrt(a*e**2 - 
 b*d*e + c*d**2) + b*e - 2*c*d))*a*c*e - 2*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a*e 
**2 - b*d*e + c*d**2) + b*e - 2*c*d)*atan((sqrt(2*sqrt(c)*sqrt(a*e**2 - b* 
d*e + c*d**2) - b*e + 2*c*d) - 2*sqrt(c)*sqrt(d + e*x))/sqrt(2*sqrt(c)*sqr 
t(a*e**2 - b*d*e + c*d**2) + b*e - 2*c*d))*b**2*e + 2*sqrt(c)*sqrt(2*sqrt( 
c)*sqrt(a*e**2 - b*d*e + c*d**2) + b*e - 2*c*d)*atan((sqrt(2*sqrt(c)*sqrt( 
a*e**2 - b*d*e + c*d**2) - b*e + 2*c*d) - 2*sqrt(c)*sqrt(d + e*x))/sqrt(2* 
sqrt(c)*sqrt(a*e**2 - b*d*e + c*d**2) + b*e - 2*c*d))*b*c*d - 2*sqrt(2*sqr 
t(c)*sqrt(a*e**2 - b*d*e + c*d**2) + b*e - 2*c*d)*sqrt(a*e**2 - b*d*e + c* 
d**2)*atan((sqrt(2*sqrt(c)*sqrt(a*e**2 - b*d*e + c*d**2) - b*e + 2*c*d) + 
2*sqrt(c)*sqrt(d + e*x))/sqrt(2*sqrt(c)*sqrt(a*e**2 - b*d*e + c*d**2) + b* 
e - 2*c*d))*b*c - 4*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a*e**2 - b*d*e + c*d**2) + 
 b*e - 2*c*d)*atan((sqrt(2*sqrt(c)*sqrt(a*e**2 - b*d*e + c*d**2) - b*e + 2 
*c*d) + 2*sqrt(c)*sqrt(d + e*x))/sqrt(2*sqrt(c)*sqrt(a*e**2 - b*d*e + c*d* 
*2) + b*e - 2*c*d))*a*c*e + 2*sqrt(c)*sqrt(2*sqrt(c)*sqrt(a*e**2 - b*d*...