\(\int \frac {(d+e x)^{3/2}}{x (a+b x+c x^2)} \, dx\) [71]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 340 \[ \int \frac {(d+e x)^{3/2}}{x \left (a+b x+c x^2\right )} \, dx=-\frac {2 d^{3/2} \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )}{a}-\frac {\sqrt {2} \left (a \sqrt {b^2-4 a c} e^2-c d \left (\sqrt {b^2-4 a c} d-4 a e\right )-b \left (c d^2+a e^2\right )\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x}}{\sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}}\right )}{a \sqrt {c} \sqrt {b^2-4 a c} \sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}}-\frac {\sqrt {2} \left (a \sqrt {b^2-4 a c} e^2-c d \left (\sqrt {b^2-4 a c} d+4 a e\right )+b \left (c d^2+a e^2\right )\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x}}{\sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}}\right )}{a \sqrt {c} \sqrt {b^2-4 a c} \sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}} \] Output:

-2*d^(3/2)*arctanh((e*x+d)^(1/2)/d^(1/2))/a-2^(1/2)*(a*(-4*a*c+b^2)^(1/2)* 
e^2-c*d*((-4*a*c+b^2)^(1/2)*d-4*a*e)-b*(a*e^2+c*d^2))*arctanh(2^(1/2)*c^(1 
/2)*(e*x+d)^(1/2)/(2*c*d-(b-(-4*a*c+b^2)^(1/2))*e)^(1/2))/a/c^(1/2)/(-4*a* 
c+b^2)^(1/2)/(2*c*d-(b-(-4*a*c+b^2)^(1/2))*e)^(1/2)-2^(1/2)*(a*(-4*a*c+b^2 
)^(1/2)*e^2-c*d*((-4*a*c+b^2)^(1/2)*d+4*a*e)+b*(a*e^2+c*d^2))*arctanh(2^(1 
/2)*c^(1/2)*(e*x+d)^(1/2)/(2*c*d-(b+(-4*a*c+b^2)^(1/2))*e)^(1/2))/a/c^(1/2 
)/(-4*a*c+b^2)^(1/2)/(2*c*d-(b+(-4*a*c+b^2)^(1/2))*e)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.11 (sec) , antiderivative size = 371, normalized size of antiderivative = 1.09 \[ \int \frac {(d+e x)^{3/2}}{x \left (a+b x+c x^2\right )} \, dx=-\frac {\frac {\sqrt {2} \left (-a \sqrt {-b^2+4 a c} e^2+c d \left (\sqrt {-b^2+4 a c} d+4 i a e\right )-i b \left (c d^2+a e^2\right )\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x}}{\sqrt {-2 c d+b e-i \sqrt {-b^2+4 a c} e}}\right )}{\sqrt {c} \sqrt {-b^2+4 a c} \sqrt {-2 c d+\left (b-i \sqrt {-b^2+4 a c}\right ) e}}+\frac {\sqrt {2} \left (-a \sqrt {-b^2+4 a c} e^2+c d \left (\sqrt {-b^2+4 a c} d-4 i a e\right )+i b \left (c d^2+a e^2\right )\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x}}{\sqrt {-2 c d+b e+i \sqrt {-b^2+4 a c} e}}\right )}{\sqrt {c} \sqrt {-b^2+4 a c} \sqrt {-2 c d+\left (b+i \sqrt {-b^2+4 a c}\right ) e}}+2 d^{3/2} \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )}{a} \] Input:

Integrate[(d + e*x)^(3/2)/(x*(a + b*x + c*x^2)),x]
 

Output:

-(((Sqrt[2]*(-(a*Sqrt[-b^2 + 4*a*c]*e^2) + c*d*(Sqrt[-b^2 + 4*a*c]*d + (4* 
I)*a*e) - I*b*(c*d^2 + a*e^2))*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt 
[-2*c*d + b*e - I*Sqrt[-b^2 + 4*a*c]*e]])/(Sqrt[c]*Sqrt[-b^2 + 4*a*c]*Sqrt 
[-2*c*d + (b - I*Sqrt[-b^2 + 4*a*c])*e]) + (Sqrt[2]*(-(a*Sqrt[-b^2 + 4*a*c 
]*e^2) + c*d*(Sqrt[-b^2 + 4*a*c]*d - (4*I)*a*e) + I*b*(c*d^2 + a*e^2))*Arc 
Tan[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[-2*c*d + b*e + I*Sqrt[-b^2 + 4*a* 
c]*e]])/(Sqrt[c]*Sqrt[-b^2 + 4*a*c]*Sqrt[-2*c*d + (b + I*Sqrt[-b^2 + 4*a*c 
])*e]) + 2*d^(3/2)*ArcTanh[Sqrt[d + e*x]/Sqrt[d]])/a)
 

Rubi [A] (verified)

Time = 1.17 (sec) , antiderivative size = 348, normalized size of antiderivative = 1.02, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {1199, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(d+e x)^{3/2}}{x \left (a+b x+c x^2\right )} \, dx\)

\(\Big \downarrow \) 1199

\(\displaystyle \frac {2 \int \left (\frac {d^2}{a x}+\frac {e \left (d \left (c d^2-b e d+a e^2\right )-\left (c d^2-a e^2\right ) (d+e x)\right )}{a \left (c d^2-b e d+a e^2+c (d+e x)^2-(2 c d-b e) (d+e x)\right )}\right )d\sqrt {d+e x}}{e}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {2 \left (-\frac {e \left (-c d \left (d \sqrt {b^2-4 a c}-4 a e\right )+a e^2 \sqrt {b^2-4 a c}-b \left (a e^2+c d^2\right )\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x}}{\sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}}\right )}{\sqrt {2} a \sqrt {c} \sqrt {b^2-4 a c} \sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}}-\frac {e \left (-c d \left (d \sqrt {b^2-4 a c}+4 a e\right )+a e^2 \sqrt {b^2-4 a c}+b \left (a e^2+c d^2\right )\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {c} \sqrt {d+e x}}{\sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}\right )}{\sqrt {2} a \sqrt {c} \sqrt {b^2-4 a c} \sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}-\frac {d^{3/2} e \text {arctanh}\left (\frac {\sqrt {d+e x}}{\sqrt {d}}\right )}{a}\right )}{e}\)

Input:

Int[(d + e*x)^(3/2)/(x*(a + b*x + c*x^2)),x]
 

Output:

(2*(-((d^(3/2)*e*ArcTanh[Sqrt[d + e*x]/Sqrt[d]])/a) - (e*(a*Sqrt[b^2 - 4*a 
*c]*e^2 - c*d*(Sqrt[b^2 - 4*a*c]*d - 4*a*e) - b*(c*d^2 + a*e^2))*ArcTanh[( 
Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]])/( 
Sqrt[2]*a*Sqrt[c]*Sqrt[b^2 - 4*a*c]*Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e 
]) - (e*(a*Sqrt[b^2 - 4*a*c]*e^2 - c*d*(Sqrt[b^2 - 4*a*c]*d + 4*a*e) + b*( 
c*d^2 + a*e^2))*ArcTanh[(Sqrt[2]*Sqrt[c]*Sqrt[d + e*x])/Sqrt[2*c*d - (b + 
Sqrt[b^2 - 4*a*c])*e]])/(Sqrt[2]*a*Sqrt[c]*Sqrt[b^2 - 4*a*c]*Sqrt[2*c*d - 
(b + Sqrt[b^2 - 4*a*c])*e])))/e
 

Defintions of rubi rules used

rule 1199
Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_.) + (b_.)*(x 
_) + (c_.)*(x_)^2), x_Symbol] :> With[{q = Denominator[m]}, Simp[q/e   Subs 
t[Int[ExpandIntegrand[x^(q*(m + 1) - 1)*(((e*f - d*g)/e + g*(x^q/e))^n/((c* 
d^2 - b*d*e + a*e^2)/e^2 - (2*c*d - b*e)*(x^q/e^2) + c*(x^(2*q)/e^2))), x], 
 x], x, (d + e*x)^(1/q)], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && Integer 
Q[n] && FractionQ[m]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [A] (verified)

Time = 1.93 (sec) , antiderivative size = 370, normalized size of antiderivative = 1.09

method result size
derivativedivides \(2 e^{2} \left (\frac {4 c \left (-\frac {\left (-a \,e^{3} b +4 a d \,e^{2} c -d^{2} e b c +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, a \,e^{2}-\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, c \,d^{2}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {e x +d}\, c \sqrt {2}}{\sqrt {\left (-b e +2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}\right )}{8 c \sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, \sqrt {\left (-b e +2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}+\frac {\left (a \,e^{3} b -4 a d \,e^{2} c +d^{2} e b c +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, a \,e^{2}-\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, c \,d^{2}\right ) \sqrt {2}\, \arctan \left (\frac {\sqrt {e x +d}\, c \sqrt {2}}{\sqrt {\left (b e -2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}\right )}{8 c \sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, \sqrt {\left (b e -2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}\right )}{a \,e^{2}}-\frac {d^{\frac {3}{2}} \operatorname {arctanh}\left (\frac {\sqrt {e x +d}}{\sqrt {d}}\right )}{a \,e^{2}}\right )\) \(370\)
default \(2 e^{2} \left (\frac {4 c \left (-\frac {\left (-a \,e^{3} b +4 a d \,e^{2} c -d^{2} e b c +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, a \,e^{2}-\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, c \,d^{2}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {e x +d}\, c \sqrt {2}}{\sqrt {\left (-b e +2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}\right )}{8 c \sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, \sqrt {\left (-b e +2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}+\frac {\left (a \,e^{3} b -4 a d \,e^{2} c +d^{2} e b c +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, a \,e^{2}-\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, c \,d^{2}\right ) \sqrt {2}\, \arctan \left (\frac {\sqrt {e x +d}\, c \sqrt {2}}{\sqrt {\left (b e -2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}\right )}{8 c \sqrt {-e^{2} \left (4 a c -b^{2}\right )}\, \sqrt {\left (b e -2 c d +\sqrt {-e^{2} \left (4 a c -b^{2}\right )}\right ) c}}\right )}{a \,e^{2}}-\frac {d^{\frac {3}{2}} \operatorname {arctanh}\left (\frac {\sqrt {e x +d}}{\sqrt {d}}\right )}{a \,e^{2}}\right )\) \(370\)
pseudoelliptic \(-\frac {2 \left (\frac {\left (\left (a \,e^{2}-c \,d^{2}\right ) \sqrt {-4 e^{2} \left (a c -\frac {b^{2}}{4}\right )}+\left (4 a d \,e^{2}-b \,d^{2} e \right ) c -a \,e^{3} b \right ) \sqrt {2}\, \sqrt {\left (b e -2 c d +\sqrt {-4 e^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) c}\, \operatorname {arctanh}\left (\frac {\sqrt {e x +d}\, c \sqrt {2}}{\sqrt {\left (-b e +2 c d +\sqrt {-4 e^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) c}}\right )}{2}+\sqrt {\left (-b e +2 c d +\sqrt {-4 e^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) c}\, \left (-\frac {\sqrt {2}\, \left (\left (a \,e^{2}-c \,d^{2}\right ) \sqrt {-4 e^{2} \left (a c -\frac {b^{2}}{4}\right )}+e \left (\left (-4 a d e +b \,d^{2}\right ) c +a b \,e^{2}\right )\right ) \arctan \left (\frac {\sqrt {e x +d}\, c \sqrt {2}}{\sqrt {\left (b e -2 c d +\sqrt {-4 e^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) c}}\right )}{2}+d^{\frac {3}{2}} \operatorname {arctanh}\left (\frac {\sqrt {e x +d}}{\sqrt {d}}\right ) \sqrt {-4 e^{2} \left (a c -\frac {b^{2}}{4}\right )}\, \sqrt {\left (b e -2 c d +\sqrt {-4 e^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) c}\right )\right )}{\sqrt {\left (-b e +2 c d +\sqrt {-4 e^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) c}\, \sqrt {-4 e^{2} \left (a c -\frac {b^{2}}{4}\right )}\, \sqrt {\left (b e -2 c d +\sqrt {-4 e^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) c}\, a}\) \(398\)

Input:

int((e*x+d)^(3/2)/x/(c*x^2+b*x+a),x,method=_RETURNVERBOSE)
 

Output:

2*e^2*(4/a/e^2*c*(-1/8*(-a*e^3*b+4*a*d*e^2*c-d^2*e*b*c+(-e^2*(4*a*c-b^2))^ 
(1/2)*a*e^2-(-e^2*(4*a*c-b^2))^(1/2)*c*d^2)/c/(-e^2*(4*a*c-b^2))^(1/2)*2^( 
1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2)*arctanh((e*x+d)^(1/2) 
*c*2^(1/2)/((-b*e+2*c*d+(-e^2*(4*a*c-b^2))^(1/2))*c)^(1/2))+1/8*(a*e^3*b-4 
*a*d*e^2*c+d^2*e*b*c+(-e^2*(4*a*c-b^2))^(1/2)*a*e^2-(-e^2*(4*a*c-b^2))^(1/ 
2)*c*d^2)/c/(-e^2*(4*a*c-b^2))^(1/2)*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c-b^2) 
)^(1/2))*c)^(1/2)*arctan((e*x+d)^(1/2)*c*2^(1/2)/((b*e-2*c*d+(-e^2*(4*a*c- 
b^2))^(1/2))*c)^(1/2)))-d^(3/2)/a/e^2*arctanh((e*x+d)^(1/2)/d^(1/2)))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2578 vs. \(2 (286) = 572\).

Time = 4.07 (sec) , antiderivative size = 5164, normalized size of antiderivative = 15.19 \[ \int \frac {(d+e x)^{3/2}}{x \left (a+b x+c x^2\right )} \, dx=\text {Too large to display} \] Input:

integrate((e*x+d)^(3/2)/x/(c*x^2+b*x+a),x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F]

\[ \int \frac {(d+e x)^{3/2}}{x \left (a+b x+c x^2\right )} \, dx=\int \frac {\left (d + e x\right )^{\frac {3}{2}}}{x \left (a + b x + c x^{2}\right )}\, dx \] Input:

integrate((e*x+d)**(3/2)/x/(c*x**2+b*x+a),x)
                                                                                    
                                                                                    
 

Output:

Integral((d + e*x)**(3/2)/(x*(a + b*x + c*x**2)), x)
 

Maxima [F]

\[ \int \frac {(d+e x)^{3/2}}{x \left (a+b x+c x^2\right )} \, dx=\int { \frac {{\left (e x + d\right )}^{\frac {3}{2}}}{{\left (c x^{2} + b x + a\right )} x} \,d x } \] Input:

integrate((e*x+d)^(3/2)/x/(c*x^2+b*x+a),x, algorithm="maxima")
 

Output:

integrate((e*x + d)^(3/2)/((c*x^2 + b*x + a)*x), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 833 vs. \(2 (286) = 572\).

Time = 0.33 (sec) , antiderivative size = 833, normalized size of antiderivative = 2.45 \[ \int \frac {(d+e x)^{3/2}}{x \left (a+b x+c x^2\right )} \, dx =\text {Too large to display} \] Input:

integrate((e*x+d)^(3/2)/x/(c*x^2+b*x+a),x, algorithm="giac")
 

Output:

2*d^2*arctan(sqrt(e*x + d)/sqrt(-d))/(a*sqrt(-d)) - 1/4*(sqrt(-4*c^2*d + 2 
*(b*c - sqrt(b^2 - 4*a*c)*c)*e)*((b^2*c - 4*a*c^2)*d^2 - (a*b^2 - 4*a^2*c) 
*e^2)*a^2*e^2 - 2*(sqrt(b^2 - 4*a*c)*a*c^2*d^3 - sqrt(b^2 - 4*a*c)*a*b*c*d 
^2*e + sqrt(b^2 - 4*a*c)*a^2*c*d*e^2)*sqrt(-4*c^2*d + 2*(b*c - sqrt(b^2 - 
4*a*c)*c)*e)*abs(a)*abs(e) - (2*a^2*b*c^2*d^3*e + 6*a^3*b*c*d*e^3 - a^3*b^ 
2*e^4 - (a^2*b^2*c + 8*a^3*c^2)*d^2*e^2)*sqrt(-4*c^2*d + 2*(b*c - sqrt(b^2 
 - 4*a*c)*c)*e))*arctan(2*sqrt(1/2)*sqrt(e*x + d)/sqrt(-(2*a*c*d - a*b*e + 
 sqrt(-4*(a*c*d^2 - a*b*d*e + a^2*e^2)*a*c + (2*a*c*d - a*b*e)^2))/(a*c))) 
/((sqrt(b^2 - 4*a*c)*a^2*c^2*d^2 - sqrt(b^2 - 4*a*c)*a^2*b*c*d*e + sqrt(b^ 
2 - 4*a*c)*a^3*c*e^2)*abs(a)*abs(c)*abs(e)) + 1/4*(sqrt(-4*c^2*d + 2*(b*c 
+ sqrt(b^2 - 4*a*c)*c)*e)*((b^2*c - 4*a*c^2)*d^2 - (a*b^2 - 4*a^2*c)*e^2)* 
a^2*e^2 + 2*(sqrt(b^2 - 4*a*c)*a*c^2*d^3 - sqrt(b^2 - 4*a*c)*a*b*c*d^2*e + 
 sqrt(b^2 - 4*a*c)*a^2*c*d*e^2)*sqrt(-4*c^2*d + 2*(b*c + sqrt(b^2 - 4*a*c) 
*c)*e)*abs(a)*abs(e) - (2*a^2*b*c^2*d^3*e + 6*a^3*b*c*d*e^3 - a^3*b^2*e^4 
- (a^2*b^2*c + 8*a^3*c^2)*d^2*e^2)*sqrt(-4*c^2*d + 2*(b*c + sqrt(b^2 - 4*a 
*c)*c)*e))*arctan(2*sqrt(1/2)*sqrt(e*x + d)/sqrt(-(2*a*c*d - a*b*e - sqrt( 
-4*(a*c*d^2 - a*b*d*e + a^2*e^2)*a*c + (2*a*c*d - a*b*e)^2))/(a*c)))/((sqr 
t(b^2 - 4*a*c)*a^2*c^2*d^2 - sqrt(b^2 - 4*a*c)*a^2*b*c*d*e + sqrt(b^2 - 4* 
a*c)*a^3*c*e^2)*abs(a)*abs(c)*abs(e))
 

Mupad [B] (verification not implemented)

Time = 18.27 (sec) , antiderivative size = 20897, normalized size of antiderivative = 61.46 \[ \int \frac {(d+e x)^{3/2}}{x \left (a+b x+c x^2\right )} \, dx=\text {Too large to display} \] Input:

int((d + e*x)^(3/2)/(x*(a + b*x + c*x^2)),x)
 

Output:

atan(((((b^4*c*d^3 - a^2*b^3*e^3 + 8*a^2*c^3*d^3 + a^2*e^3*(-(4*a*c - b^2) 
^3)^(1/2) - 6*a*b^2*c^2*d^3 - 24*a^3*c^2*d*e^2 + 4*a^3*b*c*e^3 + b*c*d^3*( 
-(4*a*c - b^2)^3)^(1/2) - 3*a*b^3*c*d^2*e - 3*a*c*d^2*e*(-(4*a*c - b^2)^3) 
^(1/2) + 12*a^2*b*c^2*d^2*e + 6*a^2*b^2*c*d*e^2)/(2*(16*a^4*c^3 + a^2*b^4* 
c - 8*a^3*b^2*c^2)))^(1/2)*((((b^4*c*d^3 - a^2*b^3*e^3 + 8*a^2*c^3*d^3 + a 
^2*e^3*(-(4*a*c - b^2)^3)^(1/2) - 6*a*b^2*c^2*d^3 - 24*a^3*c^2*d*e^2 + 4*a 
^3*b*c*e^3 + b*c*d^3*(-(4*a*c - b^2)^3)^(1/2) - 3*a*b^3*c*d^2*e - 3*a*c*d^ 
2*e*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2*d^2*e + 6*a^2*b^2*c*d*e^2)/(2* 
(16*a^4*c^3 + a^2*b^4*c - 8*a^3*b^2*c^2)))^(1/2)*((d + e*x)^(1/2)*((b^4*c* 
d^3 - a^2*b^3*e^3 + 8*a^2*c^3*d^3 + a^2*e^3*(-(4*a*c - b^2)^3)^(1/2) - 6*a 
*b^2*c^2*d^3 - 24*a^3*c^2*d*e^2 + 4*a^3*b*c*e^3 + b*c*d^3*(-(4*a*c - b^2)^ 
3)^(1/2) - 3*a*b^3*c*d^2*e - 3*a*c*d^2*e*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2 
*b*c^2*d^2*e + 6*a^2*b^2*c*d*e^2)/(2*(16*a^4*c^3 + a^2*b^4*c - 8*a^3*b^2*c 
^2)))^(1/2)*(512*a^5*c^4*e^10 + 32*a^3*b^4*c^2*e^10 - 256*a^4*b^2*c^3*e^10 
 + 768*a^4*c^5*d^2*e^8 + 64*a^2*b^4*c^3*d^2*e^8 - 448*a^3*b^2*c^4*d^2*e^8 
- 896*a^4*b*c^4*d*e^9 - 64*a^2*b^5*c^2*d*e^9 + 480*a^3*b^3*c^3*d*e^9) - 38 
4*a^3*c^5*d^4*e^8 - 384*a^4*c^4*d^2*e^10 + 96*a^2*b^2*c^4*d^4*e^8 - 128*a^ 
2*b^3*c^3*d^3*e^9 + 32*a^2*b^4*c^2*d^2*e^10 - 32*a^3*b^2*c^3*d^2*e^10 + 12 
8*a^4*b*c^3*d*e^11 + 512*a^3*b*c^4*d^3*e^9 - 32*a^3*b^3*c^2*d*e^11) + (d + 
 e*x)^(1/2)*(32*a^3*b^3*c*e^13 - 128*a^4*b*c^2*e^13 + 704*a^4*c^3*d*e^1...
 

Reduce [F]

\[ \int \frac {(d+e x)^{3/2}}{x \left (a+b x+c x^2\right )} \, dx=\int \frac {\left (e x +d \right )^{\frac {3}{2}}}{x \left (c \,x^{2}+b x +a \right )}d x \] Input:

int((e*x+d)^(3/2)/x/(c*x^2+b*x+a),x)
 

Output:

int((e*x+d)^(3/2)/x/(c*x^2+b*x+a),x)