\(\int (3-x+2 x^2)^{3/2} (2+3 x+5 x^2) \, dx\) [102]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 25, antiderivative size = 105 \[ \int \left (3-x+2 x^2\right )^{3/2} \left (2+3 x+5 x^2\right ) \, dx=-\frac {4117 (1-4 x) \sqrt {3-x+2 x^2}}{8192}-\frac {179 (1-4 x) \left (3-x+2 x^2\right )^{3/2}}{1536}+\frac {107}{240} \left (3-x+2 x^2\right )^{5/2}+\frac {5}{12} x \left (3-x+2 x^2\right )^{5/2}-\frac {94691 \text {arcsinh}\left (\frac {1-4 x}{\sqrt {23}}\right )}{16384 \sqrt {2}} \] Output:

-4117/8192*(1-4*x)*(2*x^2-x+3)^(1/2)-179/1536*(1-4*x)*(2*x^2-x+3)^(3/2)+10 
7/240*(2*x^2-x+3)^(5/2)+5/12*x*(2*x^2-x+3)^(5/2)-94691/32768*arcsinh(1/23* 
(1-4*x)*23^(1/2))*2^(1/2)
 

Mathematica [A] (verified)

Time = 0.60 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.71 \[ \int \left (3-x+2 x^2\right )^{3/2} \left (2+3 x+5 x^2\right ) \, dx=\frac {4 \sqrt {3-x+2 x^2} \left (388341+565276 x+319072 x^2+561024 x^3+14336 x^4+204800 x^5\right )-1420365 \sqrt {2} \log \left (1-4 x+2 \sqrt {6-2 x+4 x^2}\right )}{491520} \] Input:

Integrate[(3 - x + 2*x^2)^(3/2)*(2 + 3*x + 5*x^2),x]
 

Output:

(4*Sqrt[3 - x + 2*x^2]*(388341 + 565276*x + 319072*x^2 + 561024*x^3 + 1433 
6*x^4 + 204800*x^5) - 1420365*Sqrt[2]*Log[1 - 4*x + 2*Sqrt[6 - 2*x + 4*x^2 
]])/491520
 

Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.14, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {2192, 27, 1160, 1087, 1087, 1090, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (2 x^2-x+3\right )^{3/2} \left (5 x^2+3 x+2\right ) \, dx\)

\(\Big \downarrow \) 2192

\(\displaystyle \frac {1}{12} \int \frac {1}{2} (107 x+18) \left (2 x^2-x+3\right )^{3/2}dx+\frac {5}{12} x \left (2 x^2-x+3\right )^{5/2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{24} \int (107 x+18) \left (2 x^2-x+3\right )^{3/2}dx+\frac {5}{12} x \left (2 x^2-x+3\right )^{5/2}\)

\(\Big \downarrow \) 1160

\(\displaystyle \frac {1}{24} \left (\frac {179}{4} \int \left (2 x^2-x+3\right )^{3/2}dx+\frac {107}{10} \left (2 x^2-x+3\right )^{5/2}\right )+\frac {5}{12} x \left (2 x^2-x+3\right )^{5/2}\)

\(\Big \downarrow \) 1087

\(\displaystyle \frac {1}{24} \left (\frac {179}{4} \left (\frac {69}{32} \int \sqrt {2 x^2-x+3}dx-\frac {1}{16} (1-4 x) \left (2 x^2-x+3\right )^{3/2}\right )+\frac {107}{10} \left (2 x^2-x+3\right )^{5/2}\right )+\frac {5}{12} x \left (2 x^2-x+3\right )^{5/2}\)

\(\Big \downarrow \) 1087

\(\displaystyle \frac {1}{24} \left (\frac {179}{4} \left (\frac {69}{32} \left (\frac {23}{16} \int \frac {1}{\sqrt {2 x^2-x+3}}dx-\frac {1}{8} (1-4 x) \sqrt {2 x^2-x+3}\right )-\frac {1}{16} (1-4 x) \left (2 x^2-x+3\right )^{3/2}\right )+\frac {107}{10} \left (2 x^2-x+3\right )^{5/2}\right )+\frac {5}{12} x \left (2 x^2-x+3\right )^{5/2}\)

\(\Big \downarrow \) 1090

\(\displaystyle \frac {1}{24} \left (\frac {179}{4} \left (\frac {69}{32} \left (\frac {1}{16} \sqrt {\frac {23}{2}} \int \frac {1}{\sqrt {\frac {1}{23} (4 x-1)^2+1}}d(4 x-1)-\frac {1}{8} (1-4 x) \sqrt {2 x^2-x+3}\right )-\frac {1}{16} (1-4 x) \left (2 x^2-x+3\right )^{3/2}\right )+\frac {107}{10} \left (2 x^2-x+3\right )^{5/2}\right )+\frac {5}{12} x \left (2 x^2-x+3\right )^{5/2}\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {1}{24} \left (\frac {179}{4} \left (\frac {69}{32} \left (\frac {23 \text {arcsinh}\left (\frac {4 x-1}{\sqrt {23}}\right )}{16 \sqrt {2}}-\frac {1}{8} (1-4 x) \sqrt {2 x^2-x+3}\right )-\frac {1}{16} (1-4 x) \left (2 x^2-x+3\right )^{3/2}\right )+\frac {107}{10} \left (2 x^2-x+3\right )^{5/2}\right )+\frac {5}{12} x \left (2 x^2-x+3\right )^{5/2}\)

Input:

Int[(3 - x + 2*x^2)^(3/2)*(2 + 3*x + 5*x^2),x]
 

Output:

(5*x*(3 - x + 2*x^2)^(5/2))/12 + ((107*(3 - x + 2*x^2)^(5/2))/10 + (179*(- 
1/16*((1 - 4*x)*(3 - x + 2*x^2)^(3/2)) + (69*(-1/8*((1 - 4*x)*Sqrt[3 - x + 
 2*x^2]) + (23*ArcSinh[(-1 + 4*x)/Sqrt[23]])/(16*Sqrt[2])))/32))/4)/24
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 1087
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x) 
*((a + b*x + c*x^2)^p/(2*c*(2*p + 1))), x] - Simp[p*((b^2 - 4*a*c)/(2*c*(2* 
p + 1)))   Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && 
GtQ[p, 0] && (IntegerQ[4*p] || IntegerQ[3*p])
 

rule 1090
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/(2*c*(-4* 
(c/(b^2 - 4*a*c)))^p)   Subst[Int[Simp[1 - x^2/(b^2 - 4*a*c), x]^p, x], x, 
b + 2*c*x], x] /; FreeQ[{a, b, c, p}, x] && GtQ[4*a - b^2/c, 0]
 

rule 1160
Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol 
] :> Simp[e*((a + b*x + c*x^2)^(p + 1)/(2*c*(p + 1))), x] + Simp[(2*c*d - b 
*e)/(2*c)   Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] 
 && NeQ[p, -1]
 

rule 2192
Int[(Pq_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = 
Expon[Pq, x], e = Coeff[Pq, x, Expon[Pq, x]]}, Simp[e*x^(q - 1)*((a + b*x + 
 c*x^2)^(p + 1)/(c*(q + 2*p + 1))), x] + Simp[1/(c*(q + 2*p + 1))   Int[(a 
+ b*x + c*x^2)^p*ExpandToSum[c*(q + 2*p + 1)*Pq - a*e*(q - 1)*x^(q - 2) - b 
*e*(q + p)*x^(q - 1) - c*e*(q + 2*p + 1)*x^q, x], x], x]] /; FreeQ[{a, b, c 
, p}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] &&  !LeQ[p, -1]
 
Maple [A] (verified)

Time = 1.88 (sec) , antiderivative size = 55, normalized size of antiderivative = 0.52

method result size
risch \(\frac {\left (204800 x^{5}+14336 x^{4}+561024 x^{3}+319072 x^{2}+565276 x +388341\right ) \sqrt {2 x^{2}-x +3}}{122880}+\frac {94691 \sqrt {2}\, \operatorname {arcsinh}\left (\frac {4 \sqrt {23}\, \left (x -\frac {1}{4}\right )}{23}\right )}{32768}\) \(55\)
trager \(\left (\frac {5}{3} x^{5}+\frac {7}{60} x^{4}+\frac {1461}{320} x^{3}+\frac {9971}{3840} x^{2}+\frac {141319}{30720} x +\frac {129447}{40960}\right ) \sqrt {2 x^{2}-x +3}-\frac {94691 \operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right ) \ln \left (-4 \operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right ) x +\operatorname {RootOf}\left (\textit {\_Z}^{2}-2\right )+4 \sqrt {2 x^{2}-x +3}\right )}{32768}\) \(79\)
default \(\frac {179 \left (4 x -1\right ) \left (2 x^{2}-x +3\right )^{\frac {3}{2}}}{1536}+\frac {4117 \left (4 x -1\right ) \sqrt {2 x^{2}-x +3}}{8192}+\frac {94691 \sqrt {2}\, \operatorname {arcsinh}\left (\frac {4 \sqrt {23}\, \left (x -\frac {1}{4}\right )}{23}\right )}{32768}+\frac {107 \left (2 x^{2}-x +3\right )^{\frac {5}{2}}}{240}+\frac {5 x \left (2 x^{2}-x +3\right )^{\frac {5}{2}}}{12}\) \(83\)

Input:

int((2*x^2-x+3)^(3/2)*(5*x^2+3*x+2),x,method=_RETURNVERBOSE)
 

Output:

1/122880*(204800*x^5+14336*x^4+561024*x^3+319072*x^2+565276*x+388341)*(2*x 
^2-x+3)^(1/2)+94691/32768*2^(1/2)*arcsinh(4/23*23^(1/2)*(x-1/4))
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.74 \[ \int \left (3-x+2 x^2\right )^{3/2} \left (2+3 x+5 x^2\right ) \, dx=\frac {1}{122880} \, {\left (204800 \, x^{5} + 14336 \, x^{4} + 561024 \, x^{3} + 319072 \, x^{2} + 565276 \, x + 388341\right )} \sqrt {2 \, x^{2} - x + 3} + \frac {94691}{65536} \, \sqrt {2} \log \left (-4 \, \sqrt {2} \sqrt {2 \, x^{2} - x + 3} {\left (4 \, x - 1\right )} - 32 \, x^{2} + 16 \, x - 25\right ) \] Input:

integrate((2*x^2-x+3)^(3/2)*(5*x^2+3*x+2),x, algorithm="fricas")
 

Output:

1/122880*(204800*x^5 + 14336*x^4 + 561024*x^3 + 319072*x^2 + 565276*x + 38 
8341)*sqrt(2*x^2 - x + 3) + 94691/65536*sqrt(2)*log(-4*sqrt(2)*sqrt(2*x^2 
- x + 3)*(4*x - 1) - 32*x^2 + 16*x - 25)
 

Sympy [A] (verification not implemented)

Time = 0.40 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.67 \[ \int \left (3-x+2 x^2\right )^{3/2} \left (2+3 x+5 x^2\right ) \, dx=\sqrt {2 x^{2} - x + 3} \cdot \left (\frac {5 x^{5}}{3} + \frac {7 x^{4}}{60} + \frac {1461 x^{3}}{320} + \frac {9971 x^{2}}{3840} + \frac {141319 x}{30720} + \frac {129447}{40960}\right ) + \frac {94691 \sqrt {2} \operatorname {asinh}{\left (\frac {4 \sqrt {23} \left (x - \frac {1}{4}\right )}{23} \right )}}{32768} \] Input:

integrate((2*x**2-x+3)**(3/2)*(5*x**2+3*x+2),x)
 

Output:

sqrt(2*x**2 - x + 3)*(5*x**5/3 + 7*x**4/60 + 1461*x**3/320 + 9971*x**2/384 
0 + 141319*x/30720 + 129447/40960) + 94691*sqrt(2)*asinh(4*sqrt(23)*(x - 1 
/4)/23)/32768
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.99 \[ \int \left (3-x+2 x^2\right )^{3/2} \left (2+3 x+5 x^2\right ) \, dx=\frac {5}{12} \, {\left (2 \, x^{2} - x + 3\right )}^{\frac {5}{2}} x + \frac {107}{240} \, {\left (2 \, x^{2} - x + 3\right )}^{\frac {5}{2}} + \frac {179}{384} \, {\left (2 \, x^{2} - x + 3\right )}^{\frac {3}{2}} x - \frac {179}{1536} \, {\left (2 \, x^{2} - x + 3\right )}^{\frac {3}{2}} + \frac {4117}{2048} \, \sqrt {2 \, x^{2} - x + 3} x + \frac {94691}{32768} \, \sqrt {2} \operatorname {arsinh}\left (\frac {1}{23} \, \sqrt {23} {\left (4 \, x - 1\right )}\right ) - \frac {4117}{8192} \, \sqrt {2 \, x^{2} - x + 3} \] Input:

integrate((2*x^2-x+3)^(3/2)*(5*x^2+3*x+2),x, algorithm="maxima")
 

Output:

5/12*(2*x^2 - x + 3)^(5/2)*x + 107/240*(2*x^2 - x + 3)^(5/2) + 179/384*(2* 
x^2 - x + 3)^(3/2)*x - 179/1536*(2*x^2 - x + 3)^(3/2) + 4117/2048*sqrt(2*x 
^2 - x + 3)*x + 94691/32768*sqrt(2)*arcsinh(1/23*sqrt(23)*(4*x - 1)) - 411 
7/8192*sqrt(2*x^2 - x + 3)
 

Giac [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.70 \[ \int \left (3-x+2 x^2\right )^{3/2} \left (2+3 x+5 x^2\right ) \, dx=\frac {1}{122880} \, {\left (4 \, {\left (8 \, {\left (4 \, {\left (16 \, {\left (100 \, x + 7\right )} x + 4383\right )} x + 9971\right )} x + 141319\right )} x + 388341\right )} \sqrt {2 \, x^{2} - x + 3} - \frac {94691}{32768} \, \sqrt {2} \log \left (-2 \, \sqrt {2} {\left (\sqrt {2} x - \sqrt {2 \, x^{2} - x + 3}\right )} + 1\right ) \] Input:

integrate((2*x^2-x+3)^(3/2)*(5*x^2+3*x+2),x, algorithm="giac")
 

Output:

1/122880*(4*(8*(4*(16*(100*x + 7)*x + 4383)*x + 9971)*x + 141319)*x + 3883 
41)*sqrt(2*x^2 - x + 3) - 94691/32768*sqrt(2)*log(-2*sqrt(2)*(sqrt(2)*x - 
sqrt(2*x^2 - x + 3)) + 1)
 

Mupad [F(-1)]

Timed out. \[ \int \left (3-x+2 x^2\right )^{3/2} \left (2+3 x+5 x^2\right ) \, dx=\int {\left (2\,x^2-x+3\right )}^{3/2}\,\left (5\,x^2+3\,x+2\right ) \,d x \] Input:

int((2*x^2 - x + 3)^(3/2)*(3*x + 5*x^2 + 2),x)
 

Output:

int((2*x^2 - x + 3)^(3/2)*(3*x + 5*x^2 + 2), x)
 

Reduce [B] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.16 \[ \int \left (3-x+2 x^2\right )^{3/2} \left (2+3 x+5 x^2\right ) \, dx=\frac {5 \sqrt {2 x^{2}-x +3}\, x^{5}}{3}+\frac {7 \sqrt {2 x^{2}-x +3}\, x^{4}}{60}+\frac {1461 \sqrt {2 x^{2}-x +3}\, x^{3}}{320}+\frac {9971 \sqrt {2 x^{2}-x +3}\, x^{2}}{3840}+\frac {141319 \sqrt {2 x^{2}-x +3}\, x}{30720}+\frac {129447 \sqrt {2 x^{2}-x +3}}{40960}+\frac {94691 \sqrt {2}\, \mathrm {log}\left (\frac {2 \sqrt {2 x^{2}-x +3}\, \sqrt {2}+4 x -1}{\sqrt {23}}\right )}{32768} \] Input:

int((2*x^2-x+3)^(3/2)*(5*x^2+3*x+2),x)
 

Output:

(819200*sqrt(2*x**2 - x + 3)*x**5 + 57344*sqrt(2*x**2 - x + 3)*x**4 + 2244 
096*sqrt(2*x**2 - x + 3)*x**3 + 1276288*sqrt(2*x**2 - x + 3)*x**2 + 226110 
4*sqrt(2*x**2 - x + 3)*x + 1553364*sqrt(2*x**2 - x + 3) + 1420365*sqrt(2)* 
log((2*sqrt(2*x**2 - x + 3)*sqrt(2) + 4*x - 1)/sqrt(23)))/491520