\(\int \frac {(3-x+2 x^2)^{3/2}}{(2+3 x+5 x^2)^2} \, dx\) [104]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 246 \[ \int \frac {\left (3-x+2 x^2\right )^{3/2}}{\left (2+3 x+5 x^2\right )^2} \, dx=\frac {16}{155} \sqrt {3-x+2 x^2}-\frac {4}{31} x \sqrt {3-x+2 x^2}+\frac {(3+10 x) \left (3-x+2 x^2\right )^{3/2}}{31 \left (2+3 x+5 x^2\right )}-\frac {2}{25} \sqrt {2} \text {arcsinh}\left (\frac {1-4 x}{\sqrt {23}}\right )+\frac {\sqrt {\frac {11}{31} \left (3169333+2265350 \sqrt {2}\right )} \arctan \left (\frac {\sqrt {\frac {11}{62 \left (3169333+2265350 \sqrt {2}\right )}} \left (3514+2963 \sqrt {2}+\left (9440+6477 \sqrt {2}\right ) x\right )}{\sqrt {3-x+2 x^2}}\right )}{1550}-\frac {\sqrt {\frac {11}{31} \left (-3169333+2265350 \sqrt {2}\right )} \text {arctanh}\left (\frac {\sqrt {\frac {11}{62 \left (-3169333+2265350 \sqrt {2}\right )}} \left (3514-2963 \sqrt {2}+\left (9440-6477 \sqrt {2}\right ) x\right )}{\sqrt {3-x+2 x^2}}\right )}{1550} \] Output:

16/155*(2*x^2-x+3)^(1/2)-4/31*x*(2*x^2-x+3)^(1/2)+(3+10*x)*(2*x^2-x+3)^(3/ 
2)/(155*x^2+93*x+62)-2/25*arcsinh(1/23*(1-4*x)*23^(1/2))*2^(1/2)+1/48050*( 
1080742553+772484350*2^(1/2))^(1/2)*arctan(11^(1/2)/(196498646+140451700*2 
^(1/2))^(1/2)*(3514+2963*2^(1/2)+(9440+6477*2^(1/2))*x)/(2*x^2-x+3)^(1/2)) 
-1/48050*(-1080742553+772484350*2^(1/2))^(1/2)*arctanh(11^(1/2)/(-19649864 
6+140451700*2^(1/2))^(1/2)*(3514-2963*2^(1/2)+(9440-6477*2^(1/2))*x)/(2*x^ 
2-x+3)^(1/2))
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.90 (sec) , antiderivative size = 416, normalized size of antiderivative = 1.69 \[ \int \frac {\left (3-x+2 x^2\right )^{3/2}}{\left (2+3 x+5 x^2\right )^2} \, dx=\frac {50 \left (\frac {55 (7+13 x) \sqrt {3-x+2 x^2}}{2+3 x+5 x^2}-62 \sqrt {2} \log \left (1-4 x+2 \sqrt {6-2 x+4 x^2}\right )\right )+682 \text {RootSum}\left [-56-26 \sqrt {2} \text {$\#$1}+17 \text {$\#$1}^2+6 \sqrt {2} \text {$\#$1}^3-5 \text {$\#$1}^4\&,\frac {999 \log \left (-\sqrt {2} x+\sqrt {3-x+2 x^2}-\text {$\#$1}\right )+310 \sqrt {2} \log \left (-\sqrt {2} x+\sqrt {3-x+2 x^2}-\text {$\#$1}\right ) \text {$\#$1}+100 \log \left (-\sqrt {2} x+\sqrt {3-x+2 x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{-13 \sqrt {2}+17 \text {$\#$1}+9 \sqrt {2} \text {$\#$1}^2-10 \text {$\#$1}^3}\&\right ]+11 \text {RootSum}\left [-56-26 \sqrt {2} \text {$\#$1}+17 \text {$\#$1}^2+6 \sqrt {2} \text {$\#$1}^3-5 \text {$\#$1}^4\&,\frac {-72888 \log \left (-\sqrt {2} x+\sqrt {3-x+2 x^2}-\text {$\#$1}\right )+8230 \sqrt {2} \log \left (-\sqrt {2} x+\sqrt {3-x+2 x^2}-\text {$\#$1}\right ) \text {$\#$1}+2025 \log \left (-\sqrt {2} x+\sqrt {3-x+2 x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{-13 \sqrt {2}+17 \text {$\#$1}+9 \sqrt {2} \text {$\#$1}^2-10 \text {$\#$1}^3}\&\right ]}{38750} \] Input:

Integrate[(3 - x + 2*x^2)^(3/2)/(2 + 3*x + 5*x^2)^2,x]
 

Output:

(50*((55*(7 + 13*x)*Sqrt[3 - x + 2*x^2])/(2 + 3*x + 5*x^2) - 62*Sqrt[2]*Lo 
g[1 - 4*x + 2*Sqrt[6 - 2*x + 4*x^2]]) + 682*RootSum[-56 - 26*Sqrt[2]*#1 + 
17*#1^2 + 6*Sqrt[2]*#1^3 - 5*#1^4 & , (999*Log[-(Sqrt[2]*x) + Sqrt[3 - x + 
 2*x^2] - #1] + 310*Sqrt[2]*Log[-(Sqrt[2]*x) + Sqrt[3 - x + 2*x^2] - #1]*# 
1 + 100*Log[-(Sqrt[2]*x) + Sqrt[3 - x + 2*x^2] - #1]*#1^2)/(-13*Sqrt[2] + 
17*#1 + 9*Sqrt[2]*#1^2 - 10*#1^3) & ] + 11*RootSum[-56 - 26*Sqrt[2]*#1 + 1 
7*#1^2 + 6*Sqrt[2]*#1^3 - 5*#1^4 & , (-72888*Log[-(Sqrt[2]*x) + Sqrt[3 - x 
 + 2*x^2] - #1] + 8230*Sqrt[2]*Log[-(Sqrt[2]*x) + Sqrt[3 - x + 2*x^2] - #1 
]*#1 + 2025*Log[-(Sqrt[2]*x) + Sqrt[3 - x + 2*x^2] - #1]*#1^2)/(-13*Sqrt[2 
] + 17*#1 + 9*Sqrt[2]*#1^2 - 10*#1^3) & ])/38750
 

Rubi [A] (verified)

Time = 0.79 (sec) , antiderivative size = 248, normalized size of antiderivative = 1.01, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.481, Rules used = {1302, 27, 2138, 27, 2143, 27, 1090, 222, 1368, 27, 1362, 217, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (2 x^2-x+3\right )^{3/2}}{\left (5 x^2+3 x+2\right )^2} \, dx\)

\(\Big \downarrow \) 1302

\(\displaystyle \frac {(10 x+3) \left (2 x^2-x+3\right )^{3/2}}{31 \left (5 x^2+3 x+2\right )}-\frac {1}{31} \int -\frac {\left (-80 x^2-26 x+69\right ) \sqrt {2 x^2-x+3}}{2 \left (5 x^2+3 x+2\right )}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{62} \int \frac {\left (-80 x^2-26 x+69\right ) \sqrt {2 x^2-x+3}}{5 x^2+3 x+2}dx+\frac {(10 x+3) \left (2 x^2-x+3\right )^{3/2}}{31 \left (5 x^2+3 x+2\right )}\)

\(\Big \downarrow \) 2138

\(\displaystyle \frac {1}{62} \left (\frac {8}{5} (4-5 x) \sqrt {2 x^2-x+3}-\frac {1}{100} \int -\frac {20 \left (248 x^2-575 x+1307\right )}{\sqrt {2 x^2-x+3} \left (5 x^2+3 x+2\right )}dx\right )+\frac {(10 x+3) \left (2 x^2-x+3\right )^{3/2}}{31 \left (5 x^2+3 x+2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{62} \left (\frac {1}{5} \int \frac {248 x^2-575 x+1307}{\sqrt {2 x^2-x+3} \left (5 x^2+3 x+2\right )}dx+\frac {8}{5} \sqrt {2 x^2-x+3} (4-5 x)\right )+\frac {(10 x+3) \left (2 x^2-x+3\right )^{3/2}}{31 \left (5 x^2+3 x+2\right )}\)

\(\Big \downarrow \) 2143

\(\displaystyle \frac {1}{62} \left (\frac {1}{5} \left (\frac {248}{5} \int \frac {1}{\sqrt {2 x^2-x+3}}dx+\frac {1}{5} \int \frac {11 (549-329 x)}{\sqrt {2 x^2-x+3} \left (5 x^2+3 x+2\right )}dx\right )+\frac {8}{5} \sqrt {2 x^2-x+3} (4-5 x)\right )+\frac {(10 x+3) \left (2 x^2-x+3\right )^{3/2}}{31 \left (5 x^2+3 x+2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{62} \left (\frac {1}{5} \left (\frac {248}{5} \int \frac {1}{\sqrt {2 x^2-x+3}}dx+\frac {11}{5} \int \frac {549-329 x}{\sqrt {2 x^2-x+3} \left (5 x^2+3 x+2\right )}dx\right )+\frac {8}{5} \sqrt {2 x^2-x+3} (4-5 x)\right )+\frac {(10 x+3) \left (2 x^2-x+3\right )^{3/2}}{31 \left (5 x^2+3 x+2\right )}\)

\(\Big \downarrow \) 1090

\(\displaystyle \frac {1}{62} \left (\frac {1}{5} \left (\frac {11}{5} \int \frac {549-329 x}{\sqrt {2 x^2-x+3} \left (5 x^2+3 x+2\right )}dx+\frac {124}{5} \sqrt {\frac {2}{23}} \int \frac {1}{\sqrt {\frac {1}{23} (4 x-1)^2+1}}d(4 x-1)\right )+\frac {8}{5} \sqrt {2 x^2-x+3} (4-5 x)\right )+\frac {(10 x+3) \left (2 x^2-x+3\right )^{3/2}}{31 \left (5 x^2+3 x+2\right )}\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {1}{62} \left (\frac {1}{5} \left (\frac {11}{5} \int \frac {549-329 x}{\sqrt {2 x^2-x+3} \left (5 x^2+3 x+2\right )}dx+\frac {124}{5} \sqrt {2} \text {arcsinh}\left (\frac {4 x-1}{\sqrt {23}}\right )\right )+\frac {8}{5} \sqrt {2 x^2-x+3} (4-5 x)\right )+\frac {(10 x+3) \left (2 x^2-x+3\right )^{3/2}}{31 \left (5 x^2+3 x+2\right )}\)

\(\Big \downarrow \) 1368

\(\displaystyle \frac {1}{62} \left (\frac {1}{5} \left (\frac {11}{5} \left (\frac {\int -\frac {11 \left (-\left (\left (220-329 \sqrt {2}\right ) x\right )-549 \sqrt {2}+878\right )}{\sqrt {2 x^2-x+3} \left (5 x^2+3 x+2\right )}dx}{22 \sqrt {2}}-\frac {\int -\frac {11 \left (-\left (\left (220+329 \sqrt {2}\right ) x\right )+549 \sqrt {2}+878\right )}{\sqrt {2 x^2-x+3} \left (5 x^2+3 x+2\right )}dx}{22 \sqrt {2}}\right )+\frac {124}{5} \sqrt {2} \text {arcsinh}\left (\frac {4 x-1}{\sqrt {23}}\right )\right )+\frac {8}{5} \sqrt {2 x^2-x+3} (4-5 x)\right )+\frac {(10 x+3) \left (2 x^2-x+3\right )^{3/2}}{31 \left (5 x^2+3 x+2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{62} \left (\frac {1}{5} \left (\frac {11}{5} \left (\frac {\int \frac {-\left (\left (220+329 \sqrt {2}\right ) x\right )+549 \sqrt {2}+878}{\sqrt {2 x^2-x+3} \left (5 x^2+3 x+2\right )}dx}{2 \sqrt {2}}-\frac {\int \frac {-\left (\left (220-329 \sqrt {2}\right ) x\right )-549 \sqrt {2}+878}{\sqrt {2 x^2-x+3} \left (5 x^2+3 x+2\right )}dx}{2 \sqrt {2}}\right )+\frac {124}{5} \sqrt {2} \text {arcsinh}\left (\frac {4 x-1}{\sqrt {23}}\right )\right )+\frac {8}{5} \sqrt {2 x^2-x+3} (4-5 x)\right )+\frac {(10 x+3) \left (2 x^2-x+3\right )^{3/2}}{31 \left (5 x^2+3 x+2\right )}\)

\(\Big \downarrow \) 1362

\(\displaystyle \frac {1}{62} \left (\frac {1}{5} \left (\frac {11}{5} \left (\sqrt {2} \left (3169333-2265350 \sqrt {2}\right ) \int \frac {1}{-\frac {11 \left (\left (9440-6477 \sqrt {2}\right ) x-2963 \sqrt {2}+3514\right )^2}{2 x^2-x+3}-62 \left (3169333-2265350 \sqrt {2}\right )}d\frac {\left (9440-6477 \sqrt {2}\right ) x-2963 \sqrt {2}+3514}{\sqrt {2 x^2-x+3}}-\sqrt {2} \left (3169333+2265350 \sqrt {2}\right ) \int \frac {1}{-\frac {11 \left (\left (9440+6477 \sqrt {2}\right ) x+2963 \sqrt {2}+3514\right )^2}{2 x^2-x+3}-62 \left (3169333+2265350 \sqrt {2}\right )}d\frac {\left (9440+6477 \sqrt {2}\right ) x+2963 \sqrt {2}+3514}{\sqrt {2 x^2-x+3}}\right )+\frac {124}{5} \sqrt {2} \text {arcsinh}\left (\frac {4 x-1}{\sqrt {23}}\right )\right )+\frac {8}{5} \sqrt {2 x^2-x+3} (4-5 x)\right )+\frac {(10 x+3) \left (2 x^2-x+3\right )^{3/2}}{31 \left (5 x^2+3 x+2\right )}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{62} \left (\frac {1}{5} \left (\frac {11}{5} \left (\sqrt {2} \left (3169333-2265350 \sqrt {2}\right ) \int \frac {1}{-\frac {11 \left (\left (9440-6477 \sqrt {2}\right ) x-2963 \sqrt {2}+3514\right )^2}{2 x^2-x+3}-62 \left (3169333-2265350 \sqrt {2}\right )}d\frac {\left (9440-6477 \sqrt {2}\right ) x-2963 \sqrt {2}+3514}{\sqrt {2 x^2-x+3}}+\sqrt {\frac {1}{341} \left (3169333+2265350 \sqrt {2}\right )} \arctan \left (\frac {\sqrt {\frac {11}{62 \left (3169333+2265350 \sqrt {2}\right )}} \left (\left (9440+6477 \sqrt {2}\right ) x+2963 \sqrt {2}+3514\right )}{\sqrt {2 x^2-x+3}}\right )\right )+\frac {124}{5} \sqrt {2} \text {arcsinh}\left (\frac {4 x-1}{\sqrt {23}}\right )\right )+\frac {8}{5} \sqrt {2 x^2-x+3} (4-5 x)\right )+\frac {(10 x+3) \left (2 x^2-x+3\right )^{3/2}}{31 \left (5 x^2+3 x+2\right )}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{62} \left (\frac {1}{5} \left (\frac {124}{5} \sqrt {2} \text {arcsinh}\left (\frac {4 x-1}{\sqrt {23}}\right )+\frac {11}{5} \left (\sqrt {\frac {1}{341} \left (3169333+2265350 \sqrt {2}\right )} \arctan \left (\frac {\sqrt {\frac {11}{62 \left (3169333+2265350 \sqrt {2}\right )}} \left (\left (9440+6477 \sqrt {2}\right ) x+2963 \sqrt {2}+3514\right )}{\sqrt {2 x^2-x+3}}\right )+\frac {\left (3169333-2265350 \sqrt {2}\right ) \text {arctanh}\left (\frac {\sqrt {\frac {11}{62 \left (2265350 \sqrt {2}-3169333\right )}} \left (\left (9440-6477 \sqrt {2}\right ) x-2963 \sqrt {2}+3514\right )}{\sqrt {2 x^2-x+3}}\right )}{\sqrt {341 \left (2265350 \sqrt {2}-3169333\right )}}\right )\right )+\frac {8}{5} \sqrt {2 x^2-x+3} (4-5 x)\right )+\frac {(10 x+3) \left (2 x^2-x+3\right )^{3/2}}{31 \left (5 x^2+3 x+2\right )}\)

Input:

Int[(3 - x + 2*x^2)^(3/2)/(2 + 3*x + 5*x^2)^2,x]
 

Output:

((3 + 10*x)*(3 - x + 2*x^2)^(3/2))/(31*(2 + 3*x + 5*x^2)) + ((8*(4 - 5*x)* 
Sqrt[3 - x + 2*x^2])/5 + ((124*Sqrt[2]*ArcSinh[(-1 + 4*x)/Sqrt[23]])/5 + ( 
11*(Sqrt[(3169333 + 2265350*Sqrt[2])/341]*ArcTan[(Sqrt[11/(62*(3169333 + 2 
265350*Sqrt[2]))]*(3514 + 2963*Sqrt[2] + (9440 + 6477*Sqrt[2])*x))/Sqrt[3 
- x + 2*x^2]] + ((3169333 - 2265350*Sqrt[2])*ArcTanh[(Sqrt[11/(62*(-316933 
3 + 2265350*Sqrt[2]))]*(3514 - 2963*Sqrt[2] + (9440 - 6477*Sqrt[2])*x))/Sq 
rt[3 - x + 2*x^2]])/Sqrt[341*(-3169333 + 2265350*Sqrt[2])]))/5)/5)/62
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 1090
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/(2*c*(-4* 
(c/(b^2 - 4*a*c)))^p)   Subst[Int[Simp[1 - x^2/(b^2 - 4*a*c), x]^p, x], x, 
b + 2*c*x], x] /; FreeQ[{a, b, c, p}, x] && GtQ[4*a - b^2/c, 0]
 

rule 1302
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_.) + (e_.)*(x_) + (f_.)*(x 
_)^2)^(q_), x_Symbol] :> Simp[(b + 2*c*x)*(a + b*x + c*x^2)^(p + 1)*((d + e 
*x + f*x^2)^q/((b^2 - 4*a*c)*(p + 1))), x] - Simp[1/((b^2 - 4*a*c)*(p + 1)) 
   Int[(a + b*x + c*x^2)^(p + 1)*(d + e*x + f*x^2)^(q - 1)*Simp[2*c*d*(2*p 
+ 3) + b*e*q + (2*b*f*q + 2*c*e*(2*p + q + 3))*x + 2*c*f*(2*p + 2*q + 3)*x^ 
2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ 
[e^2 - 4*d*f, 0] && LtQ[p, -1] && GtQ[q, 0] &&  !IGtQ[q, 0]
 

rule 1362
Int[((g_.) + (h_.)*(x_))/(((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + 
(e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[-2*g*(g*b - 2*a*h)   Subst[I 
nt[1/Simp[g*(g*b - 2*a*h)*(b^2 - 4*a*c) - (b*d - a*e)*x^2, x], x], x, Simp[ 
g*b - 2*a*h - (b*h - 2*g*c)*x, x]/Sqrt[d + e*x + f*x^2]], x] /; FreeQ[{a, b 
, c, d, e, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && Ne 
Q[b*d - a*e, 0] && EqQ[h^2*(b*d - a*e) - 2*g*h*(c*d - a*f) + g^2*(c*e - b*f 
), 0]
 

rule 1368
Int[((g_.) + (h_.)*(x_))/(((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + 
(e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[(c*d - a*f)^2 - (b*d 
 - a*e)*(c*e - b*f), 2]}, Simp[1/(2*q)   Int[Simp[h*(b*d - a*e) - g*(c*d - 
a*f - q) - (g*(c*e - b*f) - h*(c*d - a*f + q))*x, x]/((a + b*x + c*x^2)*Sqr 
t[d + e*x + f*x^2]), x], x] - Simp[1/(2*q)   Int[Simp[h*(b*d - a*e) - g*(c* 
d - a*f + q) - (g*(c*e - b*f) - h*(c*d - a*f - q))*x, x]/((a + b*x + c*x^2) 
*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && N 
eQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && NeQ[b*d - a*e, 0] && NegQ[b^2 
- 4*a*c]
 

rule 2138
Int[(Px_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_. 
)*(x_)^2)^(q_), x_Symbol] :> With[{A = Coeff[Px, x, 0], B = Coeff[Px, x, 1] 
, C = Coeff[Px, x, 2]}, Simp[(B*c*f*(2*p + 2*q + 3) + C*(b*f*p - c*e*(2*p + 
 q + 2)) + 2*c*C*f*(p + q + 1)*x)*(a + b*x + c*x^2)^p*((d + e*x + f*x^2)^(q 
 + 1)/(2*c*f^2*(p + q + 1)*(2*p + 2*q + 3))), x] - Simp[1/(2*c*f^2*(p + q + 
 1)*(2*p + 2*q + 3))   Int[(a + b*x + c*x^2)^(p - 1)*(d + e*x + f*x^2)^q*Si 
mp[p*(b*d - a*e)*(C*(c*e - b*f)*(q + 1) - c*(C*e - B*f)*(2*p + 2*q + 3)) + 
(p + q + 1)*(b^2*C*d*f*p + a*c*(C*(2*d*f - e^2*(2*p + q + 2)) + f*(B*e - 2* 
A*f)*(2*p + 2*q + 3))) + (2*p*(c*d - a*f)*(C*(c*e - b*f)*(q + 1) - c*(C*e - 
 B*f)*(2*p + 2*q + 3)) + (p + q + 1)*(C*e*f*p*(b^2 - 4*a*c) - b*c*(C*(e^2 - 
 4*d*f)*(2*p + q + 2) + f*(2*C*d - B*e + 2*A*f)*(2*p + 2*q + 3))))*x + (p*( 
c*e - b*f)*(C*(c*e - b*f)*(q + 1) - c*(C*e - B*f)*(2*p + 2*q + 3)) + (p + q 
 + 1)*(C*f^2*p*(b^2 - 4*a*c) - c^2*(C*(e^2 - 4*d*f)*(2*p + q + 2) + f*(2*C* 
d - B*e + 2*A*f)*(2*p + 2*q + 3))))*x^2, x], x], x]] /; FreeQ[{a, b, c, d, 
e, f, q}, x] && PolyQ[Px, x, 2] && GtQ[p, 0] && NeQ[p + q + 1, 0] && NeQ[2* 
p + 2*q + 3, 0] &&  !IGtQ[p, 0] &&  !IGtQ[q, 0]
 

rule 2143
Int[(Px_)/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_ 
.)*(x_)^2]), x_Symbol] :> With[{A = Coeff[Px, x, 0], B = Coeff[Px, x, 1], C 
 = Coeff[Px, x, 2]}, Simp[C/c   Int[1/Sqrt[d + e*x + f*x^2], x], x] + Simp[ 
1/c   Int[(A*c - a*C + (B*c - b*C)*x)/((a + b*x + c*x^2)*Sqrt[d + e*x + f*x 
^2]), x], x]] /; FreeQ[{a, b, c, d, e, f}, x] && PolyQ[Px, x, 2]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 5.68 (sec) , antiderivative size = 604, normalized size of antiderivative = 2.46

method result size
trager \(\text {Expression too large to display}\) \(604\)
risch \(\frac {11 \left (7+13 x \right ) \sqrt {2 x^{2}-x +3}}{155 \left (5 x^{2}+3 x +2\right )}+\frac {2 \sqrt {2}\, \operatorname {arcsinh}\left (\frac {4 \sqrt {23}\, \left (x -\frac {1}{4}\right )}{23}\right )}{25}+\frac {\sqrt {\frac {8 \left (-1+\sqrt {2}+x \right )^{2}}{\left (\sqrt {2}+1-x \right )^{2}}+\frac {3 \sqrt {2}\, \left (-1+\sqrt {2}+x \right )^{2}}{\left (\sqrt {2}+1-x \right )^{2}}+8-3 \sqrt {2}}\, \sqrt {2}\, \left (126130 \sqrt {2}\, \sqrt {-8866+6820 \sqrt {2}}\, \arctan \left (\frac {\sqrt {-775687+549362 \sqrt {2}}\, \sqrt {-23 \left (8+3 \sqrt {2}\right ) \left (-\frac {23 \left (-1+\sqrt {2}+x \right )^{2}}{\left (\sqrt {2}+1-x \right )^{2}}+24 \sqrt {2}-41\right )}\, \left (\frac {6485 \sqrt {2}\, \left (-1+\sqrt {2}+x \right )^{2}}{\left (\sqrt {2}+1-x \right )^{2}}+\frac {10368 \left (-1+\sqrt {2}+x \right )^{2}}{\left (\sqrt {2}+1-x \right )^{2}}+22379 \sqrt {2}+32016\right ) \left (-1+\sqrt {2}+x \right ) \left (8+3 \sqrt {2}\right )}{11692487 \left (\frac {23 \left (-1+\sqrt {2}+x \right )^{4}}{\left (\sqrt {2}+1-x \right )^{4}}+\frac {82 \left (-1+\sqrt {2}+x \right )^{2}}{\left (\sqrt {2}+1-x \right )^{2}}+23\right ) \left (\sqrt {2}+1-x \right )}\right ) \sqrt {-775687+549362 \sqrt {2}}+178601 \sqrt {-8866+6820 \sqrt {2}}\, \arctan \left (\frac {\sqrt {-775687+549362 \sqrt {2}}\, \sqrt {-23 \left (8+3 \sqrt {2}\right ) \left (-\frac {23 \left (-1+\sqrt {2}+x \right )^{2}}{\left (\sqrt {2}+1-x \right )^{2}}+24 \sqrt {2}-41\right )}\, \left (\frac {6485 \sqrt {2}\, \left (-1+\sqrt {2}+x \right )^{2}}{\left (\sqrt {2}+1-x \right )^{2}}+\frac {10368 \left (-1+\sqrt {2}+x \right )^{2}}{\left (\sqrt {2}+1-x \right )^{2}}+22379 \sqrt {2}+32016\right ) \left (-1+\sqrt {2}+x \right ) \left (8+3 \sqrt {2}\right )}{11692487 \left (\frac {23 \left (-1+\sqrt {2}+x \right )^{4}}{\left (\sqrt {2}+1-x \right )^{4}}+\frac {82 \left (-1+\sqrt {2}+x \right )^{2}}{\left (\sqrt {2}+1-x \right )^{2}}+23\right ) \left (\sqrt {2}+1-x \right )}\right ) \sqrt {-775687+549362 \sqrt {2}}+193755859 \,\operatorname {arctanh}\left (\frac {31 \sqrt {\frac {8 \left (-1+\sqrt {2}+x \right )^{2}}{\left (\sqrt {2}+1-x \right )^{2}}+\frac {3 \sqrt {2}\, \left (-1+\sqrt {2}+x \right )^{2}}{\left (\sqrt {2}+1-x \right )^{2}}+8-3 \sqrt {2}}}{2 \sqrt {-8866+6820 \sqrt {2}}}\right ) \sqrt {2}-248376216 \,\operatorname {arctanh}\left (\frac {31 \sqrt {\frac {8 \left (-1+\sqrt {2}+x \right )^{2}}{\left (\sqrt {2}+1-x \right )^{2}}+\frac {3 \sqrt {2}\, \left (-1+\sqrt {2}+x \right )^{2}}{\left (\sqrt {2}+1-x \right )^{2}}+8-3 \sqrt {2}}}{2 \sqrt {-8866+6820 \sqrt {2}}}\right )\right )}{1489550 \sqrt {\frac {\frac {8 \left (-1+\sqrt {2}+x \right )^{2}}{\left (\sqrt {2}+1-x \right )^{2}}+\frac {3 \sqrt {2}\, \left (-1+\sqrt {2}+x \right )^{2}}{\left (\sqrt {2}+1-x \right )^{2}}+8-3 \sqrt {2}}{\left (1+\frac {-1+\sqrt {2}+x}{\sqrt {2}+1-x}\right )^{2}}}\, \left (1+\frac {-1+\sqrt {2}+x}{\sqrt {2}+1-x}\right ) \left (8+3 \sqrt {2}\right ) \sqrt {-8866+6820 \sqrt {2}}}\) \(730\)
default \(\text {Expression too large to display}\) \(28185\)

Input:

int((2*x^2-x+3)^(3/2)/(5*x^2+3*x+2)^2,x,method=_RETURNVERBOSE)
 

Output:

11/155*(7+13*x)/(5*x^2+3*x+2)*(2*x^2-x+3)^(1/2)+1/48050*RootOf(_Z^2+384400 
*RootOf(3075200*_Z^4+8645940424*_Z^2+6209490853225)^2+1080742553)*ln((6571 
0627584*RootOf(_Z^2+384400*RootOf(3075200*_Z^4+8645940424*_Z^2+62094908532 
25)^2+1080742553)*RootOf(3075200*_Z^4+8645940424*_Z^2+6209490853225)^4*x+1 
01773581037216*RootOf(3075200*_Z^4+8645940424*_Z^2+6209490853225)^2*RootOf 
(_Z^2+384400*RootOf(3075200*_Z^4+8645940424*_Z^2+6209490853225)^2+10807425 
53)*x-42599057069184*RootOf(3075200*_Z^4+8645940424*_Z^2+6209490853225)^2* 
RootOf(_Z^2+384400*RootOf(3075200*_Z^4+8645940424*_Z^2+6209490853225)^2+10 
80742553)-4066278786433881248*(2*x^2-x+3)^(1/2)*RootOf(3075200*_Z^4+864594 
0424*_Z^2+6209490853225)^2-11025935123814325*RootOf(_Z^2+384400*RootOf(307 
5200*_Z^4+8645940424*_Z^2+6209490853225)^2+1080742553)*x+4330816090653800* 
RootOf(_Z^2+384400*RootOf(3075200*_Z^4+8645940424*_Z^2+6209490853225)^2+10 
80742553)-5673402550436157361550*(2*x^2-x+3)^(1/2))/(12400*x*RootOf(307520 
0*_Z^4+8645940424*_Z^2+6209490853225)^2+16044655*x-1848902))-2/155*RootOf( 
3075200*_Z^4+8645940424*_Z^2+6209490853225)*ln(-(41069142240000*x*RootOf(3 
075200*_Z^4+8645940424*_Z^2+6209490853225)^5+167323715982737600*RootOf(307 
5200*_Z^4+8645940424*_Z^2+6209490853225)^3*x+26624410668240000*RootOf(3075 
200*_Z^4+8645940424*_Z^2+6209490853225)^3-4099071357292219000*(2*x^2-x+3)^ 
(1/2)*RootOf(3075200*_Z^4+8645940424*_Z^2+6209490853225)^2+138906735546068 
157756*x*RootOf(3075200*_Z^4+8645940424*_Z^2+6209490853225)+77561425919...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 574 vs. \(2 (184) = 368\).

Time = 0.10 (sec) , antiderivative size = 574, normalized size of antiderivative = 2.33 \[ \int \frac {\left (3-x+2 x^2\right )^{3/2}}{\left (2+3 x+5 x^2\right )^2} \, dx =\text {Too large to display} \] Input:

integrate((2*x^2-x+3)^(3/2)/(5*x^2+3*x+2)^2,x, algorithm="fricas")
 

Output:

-1/6200*(2*(5*x^2 + 3*x + 2)*sqrt(24918850/31*sqrt(2) + 34862663/31)*arcta 
n(-1/924451*(88*(13065*x^3 - 30409*x^2 - sqrt(2)*(9988*x^3 - 22173*x^2 - 6 
152*x + 10536) - 12288*x + 13176)*sqrt(2*x^2 - x + 3) + (171*x^4 + 1212*x^ 
3 - 1640*x^2 - 176*sqrt(2)*(6*x^4 + 5*x^3 + 5*x^2 + 12*x) - 3936*x)*sqrt(2 
4918850/31*sqrt(2) - 34862663/31))*sqrt(24918850/31*sqrt(2) + 34862663/31) 
/(343*x^4 - 400*x^3 + 1136*x^2 + 384*x - 576)) - 2*(5*x^2 + 3*x + 2)*sqrt( 
24918850/31*sqrt(2) + 34862663/31)*arctan(1/924451*(88*(13065*x^3 - 30409* 
x^2 - sqrt(2)*(9988*x^3 - 22173*x^2 - 6152*x + 10536) - 12288*x + 13176)*s 
qrt(2*x^2 - x + 3) - (171*x^4 + 1212*x^3 - 1640*x^2 - 176*sqrt(2)*(6*x^4 + 
 5*x^3 + 5*x^2 + 12*x) - 3936*x)*sqrt(24918850/31*sqrt(2) - 34862663/31))* 
sqrt(24918850/31*sqrt(2) + 34862663/31)/(343*x^4 - 400*x^3 + 1136*x^2 + 38 
4*x - 576)) - 248*sqrt(2)*(5*x^2 + 3*x + 2)*log(-4*sqrt(2)*sqrt(2*x^2 - x 
+ 3)*(4*x - 1) - 32*x^2 + 16*x - 25) + (5*x^2 + 3*x + 2)*sqrt(24918850/31* 
sqrt(2) - 34862663/31)*log((4118009*x^2 + 2*sqrt(2*x^2 - x + 3)*(sqrt(2)*( 
11748*x - 30077) + 18329*x - 41825)*sqrt(24918850/31*sqrt(2) - 34862663/31 
) + 3697804*sqrt(2)*(2*x^2 - x + 3) - 12690191*x + 16808200)/x^2) - (5*x^2 
 + 3*x + 2)*sqrt(24918850/31*sqrt(2) - 34862663/31)*log((4118009*x^2 - 2*s 
qrt(2*x^2 - x + 3)*(sqrt(2)*(11748*x - 30077) + 18329*x - 41825)*sqrt(2491 
8850/31*sqrt(2) - 34862663/31) + 3697804*sqrt(2)*(2*x^2 - x + 3) - 1269019 
1*x + 16808200)/x^2) - 440*sqrt(2*x^2 - x + 3)*(13*x + 7))/(5*x^2 + 3*x...
 

Sympy [F]

\[ \int \frac {\left (3-x+2 x^2\right )^{3/2}}{\left (2+3 x+5 x^2\right )^2} \, dx=\int \frac {\left (2 x^{2} - x + 3\right )^{\frac {3}{2}}}{\left (5 x^{2} + 3 x + 2\right )^{2}}\, dx \] Input:

integrate((2*x**2-x+3)**(3/2)/(5*x**2+3*x+2)**2,x)
 

Output:

Integral((2*x**2 - x + 3)**(3/2)/(5*x**2 + 3*x + 2)**2, x)
 

Maxima [F]

\[ \int \frac {\left (3-x+2 x^2\right )^{3/2}}{\left (2+3 x+5 x^2\right )^2} \, dx=\int { \frac {{\left (2 \, x^{2} - x + 3\right )}^{\frac {3}{2}}}{{\left (5 \, x^{2} + 3 \, x + 2\right )}^{2}} \,d x } \] Input:

integrate((2*x^2-x+3)^(3/2)/(5*x^2+3*x+2)^2,x, algorithm="maxima")
 

Output:

integrate((2*x^2 - x + 3)^(3/2)/(5*x^2 + 3*x + 2)^2, x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\left (3-x+2 x^2\right )^{3/2}}{\left (2+3 x+5 x^2\right )^2} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((2*x^2-x+3)^(3/2)/(5*x^2+3*x+2)^2,x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Unable to divide, perhaps due to ro 
unding error%%%{174900625,[8]%%%}+%%%{%%{[-419761500,0]:[1,0,-2]%%},[7]%%% 
}+%%%{-68
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (3-x+2 x^2\right )^{3/2}}{\left (2+3 x+5 x^2\right )^2} \, dx=\int \frac {{\left (2\,x^2-x+3\right )}^{3/2}}{{\left (5\,x^2+3\,x+2\right )}^2} \,d x \] Input:

int((2*x^2 - x + 3)^(3/2)/(3*x + 5*x^2 + 2)^2,x)
 

Output:

int((2*x^2 - x + 3)^(3/2)/(3*x + 5*x^2 + 2)^2, x)
 

Reduce [F]

\[ \int \frac {\left (3-x+2 x^2\right )^{3/2}}{\left (2+3 x+5 x^2\right )^2} \, dx=\frac {-13640 \sqrt {2 x^{2}-x +3}\, x +9372 \sqrt {2 x^{2}-x +3}+9530 \sqrt {2}\, \mathrm {log}\left (-2 \sqrt {2 x^{2}-x +3}\, \sqrt {2}-4 x +1\right ) x^{2}+5718 \sqrt {2}\, \mathrm {log}\left (-2 \sqrt {2 x^{2}-x +3}\, \sqrt {2}-4 x +1\right ) x +3812 \sqrt {2}\, \mathrm {log}\left (-2 \sqrt {2 x^{2}-x +3}\, \sqrt {2}-4 x +1\right )+1873685 \left (\int \frac {\sqrt {2 x^{2}-x +3}}{50 x^{6}+35 x^{5}+103 x^{4}+85 x^{3}+83 x^{2}+32 x +12}d x \right ) x^{2}+1124211 \left (\int \frac {\sqrt {2 x^{2}-x +3}}{50 x^{6}+35 x^{5}+103 x^{4}+85 x^{3}+83 x^{2}+32 x +12}d x \right ) x +749474 \left (\int \frac {\sqrt {2 x^{2}-x +3}}{50 x^{6}+35 x^{5}+103 x^{4}+85 x^{3}+83 x^{2}+32 x +12}d x \right )+64735 \left (\int \frac {\sqrt {2 x^{2}-x +3}\, x^{2}}{50 x^{6}+35 x^{5}+103 x^{4}+85 x^{3}+83 x^{2}+32 x +12}d x \right ) x^{2}+38841 \left (\int \frac {\sqrt {2 x^{2}-x +3}\, x^{2}}{50 x^{6}+35 x^{5}+103 x^{4}+85 x^{3}+83 x^{2}+32 x +12}d x \right ) x +25894 \left (\int \frac {\sqrt {2 x^{2}-x +3}\, x^{2}}{50 x^{6}+35 x^{5}+103 x^{4}+85 x^{3}+83 x^{2}+32 x +12}d x \right )}{119125 x^{2}+71475 x +47650} \] Input:

int((2*x^2-x+3)^(3/2)/(5*x^2+3*x+2)^2,x)
 

Output:

( - 13640*sqrt(2*x**2 - x + 3)*x + 9372*sqrt(2*x**2 - x + 3) + 9530*sqrt(2 
)*log( - 2*sqrt(2*x**2 - x + 3)*sqrt(2) - 4*x + 1)*x**2 + 5718*sqrt(2)*log 
( - 2*sqrt(2*x**2 - x + 3)*sqrt(2) - 4*x + 1)*x + 3812*sqrt(2)*log( - 2*sq 
rt(2*x**2 - x + 3)*sqrt(2) - 4*x + 1) + 1873685*int(sqrt(2*x**2 - x + 3)/( 
50*x**6 + 35*x**5 + 103*x**4 + 85*x**3 + 83*x**2 + 32*x + 12),x)*x**2 + 11 
24211*int(sqrt(2*x**2 - x + 3)/(50*x**6 + 35*x**5 + 103*x**4 + 85*x**3 + 8 
3*x**2 + 32*x + 12),x)*x + 749474*int(sqrt(2*x**2 - x + 3)/(50*x**6 + 35*x 
**5 + 103*x**4 + 85*x**3 + 83*x**2 + 32*x + 12),x) + 64735*int((sqrt(2*x** 
2 - x + 3)*x**2)/(50*x**6 + 35*x**5 + 103*x**4 + 85*x**3 + 83*x**2 + 32*x 
+ 12),x)*x**2 + 38841*int((sqrt(2*x**2 - x + 3)*x**2)/(50*x**6 + 35*x**5 + 
 103*x**4 + 85*x**3 + 83*x**2 + 32*x + 12),x)*x + 25894*int((sqrt(2*x**2 - 
 x + 3)*x**2)/(50*x**6 + 35*x**5 + 103*x**4 + 85*x**3 + 83*x**2 + 32*x + 1 
2),x))/(23825*(5*x**2 + 3*x + 2))