\(\int \frac {1+3 x+4 x^2}{(1+2 x)^2 (2+3 x^2)^{3/2}} \, dx\) [128]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 75 \[ \int \frac {1+3 x+4 x^2}{(1+2 x)^2 \left (2+3 x^2\right )^{3/2}} \, dx=\frac {-10+97 x}{242 \sqrt {2+3 x^2}}-\frac {4 \sqrt {2+3 x^2}}{121 (1+2 x)}+\frac {4 \text {arctanh}\left (\frac {4-3 x}{\sqrt {11} \sqrt {2+3 x^2}}\right )}{121 \sqrt {11}} \] Output:

1/242*(-10+97*x)/(3*x^2+2)^(1/2)-4*(3*x^2+2)^(1/2)/(121+242*x)+4/1331*arct 
anh(1/11*(4-3*x)*11^(1/2)/(3*x^2+2)^(1/2))*11^(1/2)
 

Mathematica [A] (verified)

Time = 0.85 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.95 \[ \int \frac {1+3 x+4 x^2}{(1+2 x)^2 \left (2+3 x^2\right )^{3/2}} \, dx=\frac {11 \left (-26+77 x+170 x^2\right )+8 (1+2 x) \sqrt {22+33 x^2} \text {arctanh}\left (\frac {4-3 x}{\sqrt {22+33 x^2}}\right )}{2662 (1+2 x) \sqrt {2+3 x^2}} \] Input:

Integrate[(1 + 3*x + 4*x^2)/((1 + 2*x)^2*(2 + 3*x^2)^(3/2)),x]
 

Output:

(11*(-26 + 77*x + 170*x^2) + 8*(1 + 2*x)*Sqrt[22 + 33*x^2]*ArcTanh[(4 - 3* 
x)/Sqrt[22 + 33*x^2]])/(2662*(1 + 2*x)*Sqrt[2 + 3*x^2])
 

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 75, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {2178, 27, 679, 488, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {4 x^2+3 x+1}{(2 x+1)^2 \left (3 x^2+2\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 2178

\(\displaystyle -\frac {1}{6} \int -\frac {24 (3-5 x)}{121 (2 x+1)^2 \sqrt {3 x^2+2}}dx-\frac {10-97 x}{242 \sqrt {3 x^2+2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {4}{121} \int \frac {3-5 x}{(2 x+1)^2 \sqrt {3 x^2+2}}dx-\frac {10-97 x}{242 \sqrt {3 x^2+2}}\)

\(\Big \downarrow \) 679

\(\displaystyle \frac {4}{121} \left (-\int \frac {1}{(2 x+1) \sqrt {3 x^2+2}}dx-\frac {\sqrt {3 x^2+2}}{2 x+1}\right )-\frac {10-97 x}{242 \sqrt {3 x^2+2}}\)

\(\Big \downarrow \) 488

\(\displaystyle \frac {4}{121} \left (\int \frac {1}{11-\frac {(4-3 x)^2}{3 x^2+2}}d\frac {4-3 x}{\sqrt {3 x^2+2}}-\frac {\sqrt {3 x^2+2}}{2 x+1}\right )-\frac {10-97 x}{242 \sqrt {3 x^2+2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {4}{121} \left (\frac {\text {arctanh}\left (\frac {4-3 x}{\sqrt {11} \sqrt {3 x^2+2}}\right )}{\sqrt {11}}-\frac {\sqrt {3 x^2+2}}{2 x+1}\right )-\frac {10-97 x}{242 \sqrt {3 x^2+2}}\)

Input:

Int[(1 + 3*x + 4*x^2)/((1 + 2*x)^2*(2 + 3*x^2)^(3/2)),x]
 

Output:

-1/242*(10 - 97*x)/Sqrt[2 + 3*x^2] + (4*(-(Sqrt[2 + 3*x^2]/(1 + 2*x)) + Ar 
cTanh[(4 - 3*x)/(Sqrt[11]*Sqrt[2 + 3*x^2])]/Sqrt[11]))/121
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 488
Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> -Subst[ 
Int[1/(b*c^2 + a*d^2 - x^2), x], x, (a*d - b*c*x)/Sqrt[a + b*x^2]] /; FreeQ 
[{a, b, c, d}, x]
 

rule 679
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p 
_.), x_Symbol] :> Simp[(-(e*f - d*g))*(d + e*x)^(m + 1)*((a + c*x^2)^(p + 1 
)/(2*(p + 1)*(c*d^2 + a*e^2))), x] + Simp[(c*d*f + a*e*g)/(c*d^2 + a*e^2) 
 Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, 
 p}, x] && EqQ[Simplify[m + 2*p + 3], 0]
 

rule 2178
Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] : 
> With[{Qx = PolynomialQuotient[(d + e*x)^m*Pq, a + b*x^2, x], R = Coeff[Po 
lynomialRemainder[(d + e*x)^m*Pq, a + b*x^2, x], x, 0], S = Coeff[Polynomia 
lRemainder[(d + e*x)^m*Pq, a + b*x^2, x], x, 1]}, Simp[(a*S - b*R*x)*((a + 
b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] + Simp[1/(2*a*b*(p + 1))   Int[(d + e*x 
)^m*(a + b*x^2)^(p + 1)*ExpandToSum[(2*a*b*(p + 1)*Qx)/(d + e*x)^m + (b*R*( 
2*p + 3))/(d + e*x)^m, x], x], x]] /; FreeQ[{a, b, d, e}, x] && PolyQ[Pq, x 
] && NeQ[b*d^2 + a*e^2, 0] && LtQ[p, -1] && ILtQ[m, 0]
 
Maple [A] (verified)

Time = 0.94 (sec) , antiderivative size = 60, normalized size of antiderivative = 0.80

method result size
risch \(\frac {170 x^{2}+77 x -26}{242 \left (1+2 x \right ) \sqrt {3 x^{2}+2}}+\frac {4 \sqrt {11}\, \operatorname {arctanh}\left (\frac {2 \left (4-3 x \right ) \sqrt {11}}{11 \sqrt {12 \left (\frac {1}{2}+x \right )^{2}+5-12 x}}\right )}{1331}\) \(60\)
trager \(\frac {\left (170 x^{2}+77 x -26\right ) \sqrt {3 x^{2}+2}}{1452 x^{3}+726 x^{2}+968 x +484}-\frac {4 \operatorname {RootOf}\left (\textit {\_Z}^{2}-11\right ) \ln \left (\frac {3 \operatorname {RootOf}\left (\textit {\_Z}^{2}-11\right ) x +11 \sqrt {3 x^{2}+2}-4 \operatorname {RootOf}\left (\textit {\_Z}^{2}-11\right )}{1+2 x}\right )}{1331}\) \(86\)
default \(\frac {x}{2 \sqrt {3 x^{2}+2}}-\frac {1}{22 \left (\frac {1}{2}+x \right ) \sqrt {3 \left (\frac {1}{2}+x \right )^{2}+\frac {5}{4}-3 x}}-\frac {2}{121 \sqrt {3 \left (\frac {1}{2}+x \right )^{2}+\frac {5}{4}-3 x}}-\frac {18 x}{121 \sqrt {3 \left (\frac {1}{2}+x \right )^{2}+\frac {5}{4}-3 x}}+\frac {4 \sqrt {11}\, \operatorname {arctanh}\left (\frac {2 \left (4-3 x \right ) \sqrt {11}}{11 \sqrt {12 \left (\frac {1}{2}+x \right )^{2}+5-12 x}}\right )}{1331}\) \(98\)

Input:

int((4*x^2+3*x+1)/(1+2*x)^2/(3*x^2+2)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/242*(170*x^2+77*x-26)/(1+2*x)/(3*x^2+2)^(1/2)+4/1331*11^(1/2)*arctanh(2/ 
11*(4-3*x)*11^(1/2)/(12*(1/2+x)^2+5-12*x)^(1/2))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.37 \[ \int \frac {1+3 x+4 x^2}{(1+2 x)^2 \left (2+3 x^2\right )^{3/2}} \, dx=\frac {4 \, \sqrt {11} {\left (6 \, x^{3} + 3 \, x^{2} + 4 \, x + 2\right )} \log \left (\frac {\sqrt {11} \sqrt {3 \, x^{2} + 2} {\left (3 \, x - 4\right )} - 21 \, x^{2} + 12 \, x - 19}{4 \, x^{2} + 4 \, x + 1}\right ) + 11 \, {\left (170 \, x^{2} + 77 \, x - 26\right )} \sqrt {3 \, x^{2} + 2}}{2662 \, {\left (6 \, x^{3} + 3 \, x^{2} + 4 \, x + 2\right )}} \] Input:

integrate((4*x^2+3*x+1)/(1+2*x)^2/(3*x^2+2)^(3/2),x, algorithm="fricas")
 

Output:

1/2662*(4*sqrt(11)*(6*x^3 + 3*x^2 + 4*x + 2)*log((sqrt(11)*sqrt(3*x^2 + 2) 
*(3*x - 4) - 21*x^2 + 12*x - 19)/(4*x^2 + 4*x + 1)) + 11*(170*x^2 + 77*x - 
 26)*sqrt(3*x^2 + 2))/(6*x^3 + 3*x^2 + 4*x + 2)
                                                                                    
                                                                                    
 

Sympy [F]

\[ \int \frac {1+3 x+4 x^2}{(1+2 x)^2 \left (2+3 x^2\right )^{3/2}} \, dx=\int \frac {4 x^{2} + 3 x + 1}{\left (2 x + 1\right )^{2} \left (3 x^{2} + 2\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((4*x**2+3*x+1)/(1+2*x)**2/(3*x**2+2)**(3/2),x)
 

Output:

Integral((4*x**2 + 3*x + 1)/((2*x + 1)**2*(3*x**2 + 2)**(3/2)), x)
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 84, normalized size of antiderivative = 1.12 \[ \int \frac {1+3 x+4 x^2}{(1+2 x)^2 \left (2+3 x^2\right )^{3/2}} \, dx=-\frac {4}{1331} \, \sqrt {11} \operatorname {arsinh}\left (\frac {\sqrt {6} x}{2 \, {\left | 2 \, x + 1 \right |}} - \frac {2 \, \sqrt {6}}{3 \, {\left | 2 \, x + 1 \right |}}\right ) + \frac {85 \, x}{242 \, \sqrt {3 \, x^{2} + 2}} - \frac {2}{121 \, \sqrt {3 \, x^{2} + 2}} - \frac {1}{11 \, {\left (2 \, \sqrt {3 \, x^{2} + 2} x + \sqrt {3 \, x^{2} + 2}\right )}} \] Input:

integrate((4*x^2+3*x+1)/(1+2*x)^2/(3*x^2+2)^(3/2),x, algorithm="maxima")
 

Output:

-4/1331*sqrt(11)*arcsinh(1/2*sqrt(6)*x/abs(2*x + 1) - 2/3*sqrt(6)/abs(2*x 
+ 1)) + 85/242*x/sqrt(3*x^2 + 2) - 2/121/sqrt(3*x^2 + 2) - 1/11/(2*sqrt(3* 
x^2 + 2)*x + sqrt(3*x^2 + 2))
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 168 vs. \(2 (60) = 120\).

Time = 0.28 (sec) , antiderivative size = 168, normalized size of antiderivative = 2.24 \[ \int \frac {1+3 x+4 x^2}{(1+2 x)^2 \left (2+3 x^2\right )^{3/2}} \, dx=-\frac {1}{7986} \, \sqrt {11} {\left (85 \, \sqrt {11} \sqrt {3} + 24 \, \log \left (\sqrt {11} \sqrt {3} - 3\right )\right )} \mathrm {sgn}\left (\frac {1}{2 \, x + 1}\right ) - \frac {\frac {\frac {93}{\mathrm {sgn}\left (\frac {1}{2 \, x + 1}\right )} + \frac {44}{{\left (2 \, x + 1\right )} \mathrm {sgn}\left (\frac {1}{2 \, x + 1}\right )}}{2 \, x + 1} - \frac {85}{\mathrm {sgn}\left (\frac {1}{2 \, x + 1}\right )}}{242 \, \sqrt {-\frac {6}{2 \, x + 1} + \frac {11}{{\left (2 \, x + 1\right )}^{2}} + 3}} + \frac {4 \, \sqrt {11} \log \left (\sqrt {11} {\left (\sqrt {-\frac {6}{2 \, x + 1} + \frac {11}{{\left (2 \, x + 1\right )}^{2}} + 3} + \frac {\sqrt {11}}{2 \, x + 1}\right )} - 3\right )}{1331 \, \mathrm {sgn}\left (\frac {1}{2 \, x + 1}\right )} \] Input:

integrate((4*x^2+3*x+1)/(1+2*x)^2/(3*x^2+2)^(3/2),x, algorithm="giac")
 

Output:

-1/7986*sqrt(11)*(85*sqrt(11)*sqrt(3) + 24*log(sqrt(11)*sqrt(3) - 3))*sgn( 
1/(2*x + 1)) - 1/242*((93/sgn(1/(2*x + 1)) + 44/((2*x + 1)*sgn(1/(2*x + 1) 
)))/(2*x + 1) - 85/sgn(1/(2*x + 1)))/sqrt(-6/(2*x + 1) + 11/(2*x + 1)^2 + 
3) + 4/1331*sqrt(11)*log(sqrt(11)*(sqrt(-6/(2*x + 1) + 11/(2*x + 1)^2 + 3) 
 + sqrt(11)/(2*x + 1)) - 3)/sgn(1/(2*x + 1))
 

Mupad [B] (verification not implemented)

Time = 16.83 (sec) , antiderivative size = 157, normalized size of antiderivative = 2.09 \[ \int \frac {1+3 x+4 x^2}{(1+2 x)^2 \left (2+3 x^2\right )^{3/2}} \, dx=\frac {4\,\sqrt {11}\,\ln \left (x-\frac {\sqrt {3}\,\sqrt {11}\,\sqrt {x^2+\frac {2}{3}}}{3}-\frac {4}{3}\right )}{1331}-\frac {4\,\sqrt {11}\,\ln \left (x+\frac {1}{2}\right )}{1331}+\frac {97\,\sqrt {3}\,\sqrt {x^2+\frac {2}{3}}}{1452\,\left (x-\frac {\sqrt {6}\,1{}\mathrm {i}}{3}\right )}+\frac {97\,\sqrt {3}\,\sqrt {x^2+\frac {2}{3}}}{1452\,\left (x+\frac {\sqrt {6}\,1{}\mathrm {i}}{3}\right )}-\frac {2\,\sqrt {3}\,\sqrt {x^2+\frac {2}{3}}}{121\,\left (x+\frac {1}{2}\right )}+\frac {\sqrt {3}\,\sqrt {6}\,\sqrt {x^2+\frac {2}{3}}\,5{}\mathrm {i}}{1452\,\left (x-\frac {\sqrt {6}\,1{}\mathrm {i}}{3}\right )}-\frac {\sqrt {3}\,\sqrt {6}\,\sqrt {x^2+\frac {2}{3}}\,5{}\mathrm {i}}{1452\,\left (x+\frac {\sqrt {6}\,1{}\mathrm {i}}{3}\right )} \] Input:

int((3*x + 4*x^2 + 1)/((2*x + 1)^2*(3*x^2 + 2)^(3/2)),x)
 

Output:

(4*11^(1/2)*log(x - (3^(1/2)*11^(1/2)*(x^2 + 2/3)^(1/2))/3 - 4/3))/1331 - 
(4*11^(1/2)*log(x + 1/2))/1331 + (97*3^(1/2)*(x^2 + 2/3)^(1/2))/(1452*(x - 
 (6^(1/2)*1i)/3)) + (97*3^(1/2)*(x^2 + 2/3)^(1/2))/(1452*(x + (6^(1/2)*1i) 
/3)) - (2*3^(1/2)*(x^2 + 2/3)^(1/2))/(121*(x + 1/2)) + (3^(1/2)*6^(1/2)*(x 
^2 + 2/3)^(1/2)*5i)/(1452*(x - (6^(1/2)*1i)/3)) - (3^(1/2)*6^(1/2)*(x^2 + 
2/3)^(1/2)*5i)/(1452*(x + (6^(1/2)*1i)/3))
 

Reduce [B] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 195, normalized size of antiderivative = 2.60 \[ \int \frac {1+3 x+4 x^2}{(1+2 x)^2 \left (2+3 x^2\right )^{3/2}} \, dx=\frac {1870 \sqrt {3 x^{2}+2}\, x^{2}+847 \sqrt {3 x^{2}+2}\, x -286 \sqrt {3 x^{2}+2}+48 \sqrt {11}\, \mathrm {log}\left (-\sqrt {3 x^{2}+2}\, \sqrt {11}+3 x -4\right ) x^{3}+24 \sqrt {11}\, \mathrm {log}\left (-\sqrt {3 x^{2}+2}\, \sqrt {11}+3 x -4\right ) x^{2}+32 \sqrt {11}\, \mathrm {log}\left (-\sqrt {3 x^{2}+2}\, \sqrt {11}+3 x -4\right ) x +16 \sqrt {11}\, \mathrm {log}\left (-\sqrt {3 x^{2}+2}\, \sqrt {11}+3 x -4\right )-48 \sqrt {11}\, \mathrm {log}\left (2 x +1\right ) x^{3}-24 \sqrt {11}\, \mathrm {log}\left (2 x +1\right ) x^{2}-32 \sqrt {11}\, \mathrm {log}\left (2 x +1\right ) x -16 \sqrt {11}\, \mathrm {log}\left (2 x +1\right )}{15972 x^{3}+7986 x^{2}+10648 x +5324} \] Input:

int((4*x^2+3*x+1)/(1+2*x)^2/(3*x^2+2)^(3/2),x)
 

Output:

(1870*sqrt(3*x**2 + 2)*x**2 + 847*sqrt(3*x**2 + 2)*x - 286*sqrt(3*x**2 + 2 
) + 48*sqrt(11)*log( - sqrt(3*x**2 + 2)*sqrt(11) + 3*x - 4)*x**3 + 24*sqrt 
(11)*log( - sqrt(3*x**2 + 2)*sqrt(11) + 3*x - 4)*x**2 + 32*sqrt(11)*log( - 
 sqrt(3*x**2 + 2)*sqrt(11) + 3*x - 4)*x + 16*sqrt(11)*log( - sqrt(3*x**2 + 
 2)*sqrt(11) + 3*x - 4) - 48*sqrt(11)*log(2*x + 1)*x**3 - 24*sqrt(11)*log( 
2*x + 1)*x**2 - 32*sqrt(11)*log(2*x + 1)*x - 16*sqrt(11)*log(2*x + 1))/(26 
62*(6*x**3 + 3*x**2 + 4*x + 2))