\(\int \frac {1}{x^3 \sqrt {a+c x^2} (d+e x+f x^2)} \, dx\) [37]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 457 \[ \int \frac {1}{x^3 \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=-\frac {\sqrt {a+c x^2}}{2 a d x^2}+\frac {e \sqrt {a+c x^2}}{a d^2 x}+\frac {f \left (2 e^3-4 d e f-\left (e^2-d f\right ) \left (e-\sqrt {e^2-4 d f}\right )\right ) \text {arctanh}\left (\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} d^3 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )}}-\frac {f \left (2 e^3-4 d e f-\left (e^2-d f\right ) \left (e+\sqrt {e^2-4 d f}\right )\right ) \text {arctanh}\left (\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} d^3 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )}}+\frac {c \text {arctanh}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{2 a^{3/2} d}-\frac {\left (e^2-d f\right ) \text {arctanh}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{\sqrt {a} d^3} \] Output:

-1/2*(c*x^2+a)^(1/2)/a/d/x^2+e*(c*x^2+a)^(1/2)/a/d^2/x+1/2*f*(2*e^3-4*d*e* 
f-(-d*f+e^2)*(e-(-4*d*f+e^2)^(1/2)))*arctanh(1/2*(2*a*f-c*(e-(-4*d*f+e^2)^ 
(1/2))*x)*2^(1/2)/(2*a*f^2+c*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2)))^(1/2)/(c*x^ 
2+a)^(1/2))*2^(1/2)/d^3/(-4*d*f+e^2)^(1/2)/(2*a*f^2+c*(e^2-2*d*f-e*(-4*d*f 
+e^2)^(1/2)))^(1/2)-1/2*f*(2*e^3-4*d*e*f-(-d*f+e^2)*(e+(-4*d*f+e^2)^(1/2)) 
)*arctanh(1/2*(2*a*f-c*(e+(-4*d*f+e^2)^(1/2))*x)*2^(1/2)/(2*a*f^2+c*(e^2-2 
*d*f+e*(-4*d*f+e^2)^(1/2)))^(1/2)/(c*x^2+a)^(1/2))*2^(1/2)/d^3/(-4*d*f+e^2 
)^(1/2)/(2*a*f^2+c*(e^2-2*d*f+e*(-4*d*f+e^2)^(1/2)))^(1/2)+1/2*c*arctanh(( 
c*x^2+a)^(1/2)/a^(1/2))/a^(3/2)/d-(-d*f+e^2)*arctanh((c*x^2+a)^(1/2)/a^(1/ 
2))/a^(1/2)/d^3
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.97 (sec) , antiderivative size = 422, normalized size of antiderivative = 0.92 \[ \int \frac {1}{x^3 \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\frac {\frac {d (-d+2 e x) \sqrt {a+c x^2}}{a x^2}-\frac {2 c d^2 \text {arctanh}\left (\frac {\sqrt {c} x-\sqrt {a+c x^2}}{\sqrt {a}}\right )}{a^{3/2}}-\frac {4 \left (e^2-d f\right ) \text {arctanh}\left (\frac {-\sqrt {c} x+\sqrt {a+c x^2}}{\sqrt {a}}\right )}{\sqrt {a}}+2 \text {RootSum}\left [a^2 f+2 a \sqrt {c} e \text {$\#$1}+4 c d \text {$\#$1}^2-2 a f \text {$\#$1}^2-2 \sqrt {c} e \text {$\#$1}^3+f \text {$\#$1}^4\&,\frac {a e^2 f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right )-a d f^2 \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right )+2 \sqrt {c} e^3 \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}-4 \sqrt {c} d e f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}-e^2 f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2+d f^2 \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{a \sqrt {c} e+4 c d \text {$\#$1}-2 a f \text {$\#$1}-3 \sqrt {c} e \text {$\#$1}^2+2 f \text {$\#$1}^3}\&\right ]}{2 d^3} \] Input:

Integrate[1/(x^3*Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]
 

Output:

((d*(-d + 2*e*x)*Sqrt[a + c*x^2])/(a*x^2) - (2*c*d^2*ArcTanh[(Sqrt[c]*x - 
Sqrt[a + c*x^2])/Sqrt[a]])/a^(3/2) - (4*(e^2 - d*f)*ArcTanh[(-(Sqrt[c]*x) 
+ Sqrt[a + c*x^2])/Sqrt[a]])/Sqrt[a] + 2*RootSum[a^2*f + 2*a*Sqrt[c]*e*#1 
+ 4*c*d*#1^2 - 2*a*f*#1^2 - 2*Sqrt[c]*e*#1^3 + f*#1^4 & , (a*e^2*f*Log[-(S 
qrt[c]*x) + Sqrt[a + c*x^2] - #1] - a*d*f^2*Log[-(Sqrt[c]*x) + Sqrt[a + c* 
x^2] - #1] + 2*Sqrt[c]*e^3*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1 - 4 
*Sqrt[c]*d*e*f*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1 - e^2*f*Log[-(S 
qrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1^2 + d*f^2*Log[-(Sqrt[c]*x) + Sqrt[a + 
 c*x^2] - #1]*#1^2)/(a*Sqrt[c]*e + 4*c*d*#1 - 2*a*f*#1 - 3*Sqrt[c]*e*#1^2 
+ 2*f*#1^3) & ])/(2*d^3)
 

Rubi [A] (verified)

Time = 1.65 (sec) , antiderivative size = 457, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {7279, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^3 \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx\)

\(\Big \downarrow \) 7279

\(\displaystyle \int \left (\frac {e^2-d f}{d^3 x \sqrt {a+c x^2}}+\frac {-f x \left (e^2-d f\right )-e \left (e^2-2 d f\right )}{d^3 \sqrt {a+c x^2} \left (d+e x+f x^2\right )}-\frac {e}{d^2 x^2 \sqrt {a+c x^2}}+\frac {1}{d x^3 \sqrt {a+c x^2}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {c \text {arctanh}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{2 a^{3/2} d}-\frac {\left (e^2-d f\right ) \text {arctanh}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{\sqrt {a} d^3}+\frac {f \left (-\left (e^2-d f\right ) \left (e-\sqrt {e^2-4 d f}\right )-4 d e f+2 e^3\right ) \text {arctanh}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d^3 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {f \left (-\left (e^2-d f\right ) \left (\sqrt {e^2-4 d f}+e\right )-4 d e f+2 e^3\right ) \text {arctanh}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d^3 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {e \sqrt {a+c x^2}}{a d^2 x}-\frac {\sqrt {a+c x^2}}{2 a d x^2}\)

Input:

Int[1/(x^3*Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]
 

Output:

-1/2*Sqrt[a + c*x^2]/(a*d*x^2) + (e*Sqrt[a + c*x^2])/(a*d^2*x) + (f*(2*e^3 
 - 4*d*e*f - (e^2 - d*f)*(e - Sqrt[e^2 - 4*d*f]))*ArcTanh[(2*a*f - c*(e - 
Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 
- 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*d^3*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 
+ c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]) - (f*(2*e^3 - 4*d*e*f - (e^2 - d 
*f)*(e + Sqrt[e^2 - 4*d*f]))*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*x) 
/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c 
*x^2])])/(Sqrt[2]*d^3*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e* 
Sqrt[e^2 - 4*d*f])]) + (c*ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]])/(2*a^(3/2)*d) 
- ((e^2 - d*f)*ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]])/(Sqrt[a]*d^3)
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7279
Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[ 
{v = RationalFunctionExpand[u/(a + b*x^n + c*x^(2*n)), x]}, Int[v, x] /; Su 
mQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
 
Maple [A] (verified)

Time = 2.19 (sec) , antiderivative size = 777, normalized size of antiderivative = 1.70

method result size
risch \(-\frac {\sqrt {c \,x^{2}+a}\, \left (-2 e x +d \right )}{2 a \,d^{2} x^{2}}-\frac {\frac {4 f \left (2 a d f -2 a \,e^{2}+c \,d^{2}\right ) \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {c \,x^{2}+a}}{x}\right )}{\left (-e +\sqrt {-4 d f +e^{2}}\right ) \left (e +\sqrt {-4 d f +e^{2}}\right ) \sqrt {a}}+\frac {2 f a \left (e^{2}-2 d f +e \sqrt {-4 d f +e^{2}}\right ) \sqrt {2}\, \ln \left (\frac {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 d f c +c \,e^{2}}{f^{2}}-\frac {c \left (e -\sqrt {-4 d f +e^{2}}\right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {\sqrt {2}\, \sqrt {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 d f c +c \,e^{2}}{f^{2}}}\, \sqrt {4 c {\left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}^{2}-\frac {4 c \left (e -\sqrt {-4 d f +e^{2}}\right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {-2 \sqrt {-4 d f +e^{2}}\, c e +4 a \,f^{2}-4 d f c +2 c \,e^{2}}{f^{2}}}}{2}}{x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{\sqrt {-4 d f +e^{2}}\, \left (-e +\sqrt {-4 d f +e^{2}}\right ) \sqrt {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 d f c +c \,e^{2}}{f^{2}}}}-\frac {2 f a \left (e \sqrt {-4 d f +e^{2}}+2 d f -e^{2}\right ) \sqrt {2}\, \ln \left (\frac {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 d f c +c \,e^{2}}{f^{2}}-\frac {c \left (e +\sqrt {-4 d f +e^{2}}\right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {\sqrt {2}\, \sqrt {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 d f c +c \,e^{2}}{f^{2}}}\, \sqrt {4 c {\left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}^{2}-\frac {4 c \left (e +\sqrt {-4 d f +e^{2}}\right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {2 \sqrt {-4 d f +e^{2}}\, c e +4 a \,f^{2}-4 d f c +2 c \,e^{2}}{f^{2}}}}{2}}{x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{\sqrt {-4 d f +e^{2}}\, \left (e +\sqrt {-4 d f +e^{2}}\right ) \sqrt {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 d f c +c \,e^{2}}{f^{2}}}}}{2 a \,d^{2}}\) \(777\)
default \(-\frac {4 f \left (-\frac {\sqrt {c \,x^{2}+a}}{2 a \,x^{2}}+\frac {c \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {c \,x^{2}+a}}{x}\right )}{2 a^{\frac {3}{2}}}\right )}{\left (-e +\sqrt {-4 d f +e^{2}}\right ) \left (e +\sqrt {-4 d f +e^{2}}\right )}-\frac {8 f^{3} \sqrt {2}\, \ln \left (\frac {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 d f c +c \,e^{2}}{f^{2}}-\frac {c \left (e -\sqrt {-4 d f +e^{2}}\right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {\sqrt {2}\, \sqrt {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 d f c +c \,e^{2}}{f^{2}}}\, \sqrt {4 c {\left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}^{2}-\frac {4 c \left (e -\sqrt {-4 d f +e^{2}}\right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {-2 \sqrt {-4 d f +e^{2}}\, c e +4 a \,f^{2}-4 d f c +2 c \,e^{2}}{f^{2}}}}{2}}{x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{\left (-e +\sqrt {-4 d f +e^{2}}\right )^{3} \sqrt {-4 d f +e^{2}}\, \sqrt {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 d f c +c \,e^{2}}{f^{2}}}}-\frac {8 f^{3} \sqrt {2}\, \ln \left (\frac {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 d f c +c \,e^{2}}{f^{2}}-\frac {c \left (e +\sqrt {-4 d f +e^{2}}\right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {\sqrt {2}\, \sqrt {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 d f c +c \,e^{2}}{f^{2}}}\, \sqrt {4 c {\left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}^{2}-\frac {4 c \left (e +\sqrt {-4 d f +e^{2}}\right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {2 \sqrt {-4 d f +e^{2}}\, c e +4 a \,f^{2}-4 d f c +2 c \,e^{2}}{f^{2}}}}{2}}{x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{\left (e +\sqrt {-4 d f +e^{2}}\right )^{3} \sqrt {-4 d f +e^{2}}\, \sqrt {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 d f c +c \,e^{2}}{f^{2}}}}+\frac {16 f^{2} e \sqrt {c \,x^{2}+a}}{\left (-e +\sqrt {-4 d f +e^{2}}\right )^{2} \left (e +\sqrt {-4 d f +e^{2}}\right )^{2} a x}-\frac {64 f^{3} \left (d f -e^{2}\right ) \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {c \,x^{2}+a}}{x}\right )}{\left (-e +\sqrt {-4 d f +e^{2}}\right )^{3} \left (e +\sqrt {-4 d f +e^{2}}\right )^{3} \sqrt {a}}\) \(827\)

Input:

int(1/x^3/(c*x^2+a)^(1/2)/(f*x^2+e*x+d),x,method=_RETURNVERBOSE)
 

Output:

-1/2*(c*x^2+a)^(1/2)*(-2*e*x+d)/a/d^2/x^2-1/2/a/d^2*(4*f*(2*a*d*f-2*a*e^2+ 
c*d^2)/(-e+(-4*d*f+e^2)^(1/2))/(e+(-4*d*f+e^2)^(1/2))/a^(1/2)*ln((2*a+2*a^ 
(1/2)*(c*x^2+a)^(1/2))/x)+2*f*a*(e^2-2*d*f+e*(-4*d*f+e^2)^(1/2))/(-4*d*f+e 
^2)^(1/2)/(-e+(-4*d*f+e^2)^(1/2))*2^(1/2)/((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^ 
2-2*d*f*c+c*e^2)/f^2)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*d*f*c+c 
*e^2)/f^2-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+1/2 
*2^(1/2)*((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*d*f*c+c*e^2)/f^2)^(1/2)*(4*c* 
(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))^2-4*c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2/f* 
(-e+(-4*d*f+e^2)^(1/2)))+2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*d*f*c+c*e^2) 
/f^2)^(1/2))/(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2))))-2*f*a*(e*(-4*d*f+e^2)^(1/2 
)+2*d*f-e^2)/(-4*d*f+e^2)^(1/2)/(e+(-4*d*f+e^2)^(1/2))*2^(1/2)/(((-4*d*f+e 
^2)^(1/2)*c*e+2*a*f^2-2*d*f*c+c*e^2)/f^2)^(1/2)*ln((((-4*d*f+e^2)^(1/2)*c* 
e+2*a*f^2-2*d*f*c+c*e^2)/f^2-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+ 
e^2)^(1/2))/f)+1/2*2^(1/2)*(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*d*f*c+c*e^2) 
/f^2)^(1/2)*(4*c*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2-4*c*(e+(-4*d*f+e^2)^(1 
/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2- 
2*d*f*c+c*e^2)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)))
 

Fricas [F(-1)]

Timed out. \[ \int \frac {1}{x^3 \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\text {Timed out} \] Input:

integrate(1/x^3/(c*x^2+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {1}{x^3 \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\int \frac {1}{x^{3} \sqrt {a + c x^{2}} \left (d + e x + f x^{2}\right )}\, dx \] Input:

integrate(1/x**3/(c*x**2+a)**(1/2)/(f*x**2+e*x+d),x)
 

Output:

Integral(1/(x**3*sqrt(a + c*x**2)*(d + e*x + f*x**2)), x)
 

Maxima [F]

\[ \int \frac {1}{x^3 \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\int { \frac {1}{\sqrt {c x^{2} + a} {\left (f x^{2} + e x + d\right )} x^{3}} \,d x } \] Input:

integrate(1/x^3/(c*x^2+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="maxima")
 

Output:

integrate(1/(sqrt(c*x^2 + a)*(f*x^2 + e*x + d)*x^3), x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {1}{x^3 \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\text {Timed out} \] Input:

integrate(1/x^3/(c*x^2+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^3 \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\int \frac {1}{x^3\,\sqrt {c\,x^2+a}\,\left (f\,x^2+e\,x+d\right )} \,d x \] Input:

int(1/(x^3*(a + c*x^2)^(1/2)*(d + e*x + f*x^2)),x)
 

Output:

int(1/(x^3*(a + c*x^2)^(1/2)*(d + e*x + f*x^2)), x)
 

Reduce [F]

\[ \int \frac {1}{x^3 \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\text {too large to display} \] Input:

int(1/x^3/(c*x^2+a)^(1/2)/(f*x^2+e*x+d),x)
 

Output:

(8*sqrt(a + c*x**2)*a**3*d**2*f**2 - 16*sqrt(a + c*x**2)*a**3*d*e**2*f + 8 
*sqrt(a + c*x**2)*a**3*e**4 + 8*sqrt(a + c*x**2)*a**2*c*d**2*e*f*x - 8*sqr 
t(a + c*x**2)*a**2*c*d*e**3*x - 2*sqrt(a + c*x**2)*a*c**2*d**4 + 4*sqrt(a 
+ c*x**2)*a*c**2*d**3*e*x - 2*sqrt(a)*log(sqrt(a + c*x**2) - sqrt(a))*a*c* 
*2*d**3*f*x**2 + 2*sqrt(a)*log(sqrt(a + c*x**2) - sqrt(a))*a*c**2*d**2*e** 
2*x**2 - sqrt(a)*log(sqrt(a + c*x**2) - sqrt(a))*c**3*d**4*x**2 + 2*sqrt(a 
)*log(sqrt(a + c*x**2) + sqrt(a))*a*c**2*d**3*f*x**2 - 2*sqrt(a)*log(sqrt( 
a + c*x**2) + sqrt(a))*a*c**2*d**2*e**2*x**2 + sqrt(a)*log(sqrt(a + c*x**2 
) + sqrt(a))*c**3*d**4*x**2 + 16*int(sqrt(a + c*x**2)/(a*d*x**3 + a*e*x**4 
 + a*f*x**5 + c*d*x**5 + c*e*x**6 + c*f*x**7),x)*a**4*d**3*f**2*x**2 - 32* 
int(sqrt(a + c*x**2)/(a*d*x**3 + a*e*x**4 + a*f*x**5 + c*d*x**5 + c*e*x**6 
 + c*f*x**7),x)*a**4*d**2*e**2*f*x**2 + 16*int(sqrt(a + c*x**2)/(a*d*x**3 
+ a*e*x**4 + a*f*x**5 + c*d*x**5 + c*e*x**6 + c*f*x**7),x)*a**4*d*e**4*x** 
2 + 16*int(sqrt(a + c*x**2)/(a*d*x**2 + a*e*x**3 + a*f*x**4 + c*d*x**4 + c 
*e*x**5 + c*f*x**6),x)*a**4*d**2*e*f**2*x**2 - 32*int(sqrt(a + c*x**2)/(a* 
d*x**2 + a*e*x**3 + a*f*x**4 + c*d*x**4 + c*e*x**5 + c*f*x**6),x)*a**4*d*e 
**3*f*x**2 + 16*int(sqrt(a + c*x**2)/(a*d*x**2 + a*e*x**3 + a*f*x**4 + c*d 
*x**4 + c*e*x**5 + c*f*x**6),x)*a**4*e**5*x**2 + 8*int(sqrt(a + c*x**2)/(a 
*d*x**2 + a*e*x**3 + a*f*x**4 + c*d*x**4 + c*e*x**5 + c*f*x**6),x)*a**3*c* 
d**3*e*f*x**2 - 8*int(sqrt(a + c*x**2)/(a*d*x**2 + a*e*x**3 + a*f*x**4 ...