\(\int \frac {x^2}{(a+c x^2)^{3/2} (d+e x+f x^2)} \, dx\) [39]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 410 \[ \int \frac {x^2}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx=-\frac {a e+(c d-a f) x}{\left (a c e^2+(c d-a f)^2\right ) \sqrt {a+c x^2}}-\frac {f \left (2 d (c d-a f)+a e \left (e-\sqrt {e^2-4 d f}\right )\right ) \text {arctanh}\left (\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right ) \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )}}+\frac {f \left (2 d (c d-a f)+a e \left (e+\sqrt {e^2-4 d f}\right )\right ) \text {arctanh}\left (\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right ) \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )}} \] Output:

-(a*e+(-a*f+c*d)*x)/(a*c*e^2+(-a*f+c*d)^2)/(c*x^2+a)^(1/2)-1/2*f*(2*d*(-a* 
f+c*d)+a*e*(e-(-4*d*f+e^2)^(1/2)))*arctanh(1/2*(2*a*f-c*(e-(-4*d*f+e^2)^(1 
/2))*x)*2^(1/2)/(2*a*f^2+c*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2)))^(1/2)/(c*x^2+ 
a)^(1/2))*2^(1/2)/(-4*d*f+e^2)^(1/2)/(a*c*e^2+(-a*f+c*d)^2)/(2*a*f^2+c*(e^ 
2-2*d*f-e*(-4*d*f+e^2)^(1/2)))^(1/2)+1/2*f*(2*d*(-a*f+c*d)+a*e*(e+(-4*d*f+ 
e^2)^(1/2)))*arctanh(1/2*(2*a*f-c*(e+(-4*d*f+e^2)^(1/2))*x)*2^(1/2)/(2*a*f 
^2+c*(e^2-2*d*f+e*(-4*d*f+e^2)^(1/2)))^(1/2)/(c*x^2+a)^(1/2))*2^(1/2)/(-4* 
d*f+e^2)^(1/2)/(a*c*e^2+(-a*f+c*d)^2)/(2*a*f^2+c*(e^2-2*d*f+e*(-4*d*f+e^2) 
^(1/2)))^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.73 (sec) , antiderivative size = 385, normalized size of antiderivative = 0.94 \[ \int \frac {x^2}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx=\frac {-a e-c d x+a f x-\sqrt {a+c x^2} \text {RootSum}\left [c^2 d+2 \sqrt {a} c e \text {$\#$1}-2 c d \text {$\#$1}^2+4 a f \text {$\#$1}^2-2 \sqrt {a} e \text {$\#$1}^3+d \text {$\#$1}^4\&,\frac {-c^2 d^2 \log (x)+a c d f \log (x)+c^2 d^2 \log \left (-\sqrt {a}+\sqrt {a+c x^2}-x \text {$\#$1}\right )-a c d f \log \left (-\sqrt {a}+\sqrt {a+c x^2}-x \text {$\#$1}\right )+2 a^{3/2} e f \log (x) \text {$\#$1}-2 a^{3/2} e f \log \left (-\sqrt {a}+\sqrt {a+c x^2}-x \text {$\#$1}\right ) \text {$\#$1}+c d^2 \log (x) \text {$\#$1}^2-a d f \log (x) \text {$\#$1}^2-c d^2 \log \left (-\sqrt {a}+\sqrt {a+c x^2}-x \text {$\#$1}\right ) \text {$\#$1}^2+a d f \log \left (-\sqrt {a}+\sqrt {a+c x^2}-x \text {$\#$1}\right ) \text {$\#$1}^2}{-\sqrt {a} c e+2 c d \text {$\#$1}-4 a f \text {$\#$1}+3 \sqrt {a} e \text {$\#$1}^2-2 d \text {$\#$1}^3}\&\right ]}{\left (c^2 d^2+a^2 f^2+a c \left (e^2-2 d f\right )\right ) \sqrt {a+c x^2}} \] Input:

Integrate[x^2/((a + c*x^2)^(3/2)*(d + e*x + f*x^2)),x]
 

Output:

(-(a*e) - c*d*x + a*f*x - Sqrt[a + c*x^2]*RootSum[c^2*d + 2*Sqrt[a]*c*e*#1 
 - 2*c*d*#1^2 + 4*a*f*#1^2 - 2*Sqrt[a]*e*#1^3 + d*#1^4 & , (-(c^2*d^2*Log[ 
x]) + a*c*d*f*Log[x] + c^2*d^2*Log[-Sqrt[a] + Sqrt[a + c*x^2] - x*#1] - a* 
c*d*f*Log[-Sqrt[a] + Sqrt[a + c*x^2] - x*#1] + 2*a^(3/2)*e*f*Log[x]*#1 - 2 
*a^(3/2)*e*f*Log[-Sqrt[a] + Sqrt[a + c*x^2] - x*#1]*#1 + c*d^2*Log[x]*#1^2 
 - a*d*f*Log[x]*#1^2 - c*d^2*Log[-Sqrt[a] + Sqrt[a + c*x^2] - x*#1]*#1^2 + 
 a*d*f*Log[-Sqrt[a] + Sqrt[a + c*x^2] - x*#1]*#1^2)/(-(Sqrt[a]*c*e) + 2*c* 
d*#1 - 4*a*f*#1 + 3*Sqrt[a]*e*#1^2 - 2*d*#1^3) & ])/((c^2*d^2 + a^2*f^2 + 
a*c*(e^2 - 2*d*f))*Sqrt[a + c*x^2])
 

Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 393, normalized size of antiderivative = 0.96, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {2136, 27, 1367, 488, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx\)

\(\Big \downarrow \) 2136

\(\displaystyle \frac {\int \frac {2 a c (d (c d-a f)-a e f x)}{\sqrt {c x^2+a} \left (f x^2+e x+d\right )}dx}{2 a c \left ((c d-a f)^2+a c e^2\right )}-\frac {x (c d-a f)+a e}{\sqrt {a+c x^2} \left ((c d-a f)^2+a c e^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {d (c d-a f)-a e f x}{\sqrt {c x^2+a} \left (f x^2+e x+d\right )}dx}{(c d-a f)^2+a c e^2}-\frac {x (c d-a f)+a e}{\sqrt {a+c x^2} \left ((c d-a f)^2+a c e^2\right )}\)

\(\Big \downarrow \) 1367

\(\displaystyle \frac {\frac {f \left (2 d (c d-a f)+a e \left (e-\sqrt {e^2-4 d f}\right )\right ) \int \frac {1}{\left (e+2 f x-\sqrt {e^2-4 d f}\right ) \sqrt {c x^2+a}}dx}{\sqrt {e^2-4 d f}}-\frac {f \left (2 d (c d-a f)+a e \left (\sqrt {e^2-4 d f}+e\right )\right ) \int \frac {1}{\left (e+2 f x+\sqrt {e^2-4 d f}\right ) \sqrt {c x^2+a}}dx}{\sqrt {e^2-4 d f}}}{(c d-a f)^2+a c e^2}-\frac {x (c d-a f)+a e}{\sqrt {a+c x^2} \left ((c d-a f)^2+a c e^2\right )}\)

\(\Big \downarrow \) 488

\(\displaystyle \frac {\frac {f \left (2 d (c d-a f)+a e \left (\sqrt {e^2-4 d f}+e\right )\right ) \int \frac {1}{4 a f^2+c \left (e+\sqrt {e^2-4 d f}\right )^2-\frac {\left (2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x\right )^2}{c x^2+a}}d\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {c x^2+a}}}{\sqrt {e^2-4 d f}}-\frac {f \left (2 d (c d-a f)+a e \left (e-\sqrt {e^2-4 d f}\right )\right ) \int \frac {1}{4 a f^2+c \left (e-\sqrt {e^2-4 d f}\right )^2-\frac {\left (2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x\right )^2}{c x^2+a}}d\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {c x^2+a}}}{\sqrt {e^2-4 d f}}}{(c d-a f)^2+a c e^2}-\frac {x (c d-a f)+a e}{\sqrt {a+c x^2} \left ((c d-a f)^2+a c e^2\right )}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {f \left (2 d (c d-a f)+a e \left (\sqrt {e^2-4 d f}+e\right )\right ) \text {arctanh}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {f \left (2 d (c d-a f)+a e \left (e-\sqrt {e^2-4 d f}\right )\right ) \text {arctanh}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}}{(c d-a f)^2+a c e^2}-\frac {x (c d-a f)+a e}{\sqrt {a+c x^2} \left ((c d-a f)^2+a c e^2\right )}\)

Input:

Int[x^2/((a + c*x^2)^(3/2)*(d + e*x + f*x^2)),x]
 

Output:

-((a*e + (c*d - a*f)*x)/((a*c*e^2 + (c*d - a*f)^2)*Sqrt[a + c*x^2])) + (-( 
(f*(2*d*(c*d - a*f) + a*e*(e - Sqrt[e^2 - 4*d*f]))*ArcTanh[(2*a*f - c*(e - 
 Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 
 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c 
*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])])) + (f*(2*d*(c*d - a*f) + a*e*(e + S 
qrt[e^2 - 4*d*f]))*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]* 
Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/( 
Sqrt[2]*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d 
*f])]))/(a*c*e^2 + (c*d - a*f)^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 488
Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> -Subst[ 
Int[1/(b*c^2 + a*d^2 - x^2), x], x, (a*d - b*c*x)/Sqrt[a + b*x^2]] /; FreeQ 
[{a, b, c, d}, x]
 

rule 1367
Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (f 
_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(2*c*g - h*( 
b - q))/q   Int[1/((b - q + 2*c*x)*Sqrt[d + f*x^2]), x], x] - Simp[(2*c*g - 
 h*(b + q))/q   Int[1/((b + q + 2*c*x)*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{ 
a, b, c, d, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c]
 

rule 2136
Int[(Px_)*((a_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_ 
), x_Symbol] :> With[{A = Coeff[Px, x, 0], B = Coeff[Px, x, 1], C = Coeff[P 
x, x, 2]}, Simp[(a + c*x^2)^(p + 1)*((d + e*x + f*x^2)^(q + 1)/((-4*a*c)*(a 
*c*e^2 + (c*d - a*f)^2)*(p + 1)))*((A*c - a*C)*(2*a*c*e) + ((-a)*B)*(2*c^2* 
d - c*(2*a*f)) + c*(A*(2*c^2*d - c*(2*a*f)) - B*(-2*a*c*e) + C*(-2*a*(c*d - 
 a*f)))*x), x] + Simp[1/((-4*a*c)*(a*c*e^2 + (c*d - a*f)^2)*(p + 1))   Int[ 
(a + c*x^2)^(p + 1)*(d + e*x + f*x^2)^q*Simp[(-2*A*c - 2*a*C)*((c*d - a*f)^ 
2 - ((-a)*e)*(c*e))*(p + 1) + (2*(A*c*(c*d - a*f) - a*(c*C*d - B*c*e - a*C* 
f)))*(a*f*(p + 1) - c*d*(p + 2)) - e*((A*c - a*C)*(2*a*c*e) + ((-a)*B)*(2*c 
^2*d - c*((Plus[2])*a*f)))*(p + q + 2) - (2*f*((A*c - a*C)*(2*a*c*e) + ((-a 
)*B)*(2*c^2*d + (-c)*((Plus[2])*a*f)))*(p + q + 2) - (2*(A*c*(c*d - a*f) - 
a*(c*C*d - B*c*e - a*C*f)))*((-c)*e*(2*p + q + 4)))*x - c*f*(2*(A*c*(c*d - 
a*f) - a*(c*C*d - B*c*e - a*C*f)))*(2*p + 2*q + 5)*x^2, x], x], x]] /; Free 
Q[{a, c, d, e, f, q}, x] && PolyQ[Px, x, 2] && LtQ[p, -1] && NeQ[a*c*e^2 + 
(c*d - a*f)^2, 0] &&  !( !IntegerQ[p] && ILtQ[q, -1]) &&  !IGtQ[q, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1522\) vs. \(2(371)=742\).

Time = 2.11 (sec) , antiderivative size = 1523, normalized size of antiderivative = 3.71

method result size
default \(\text {Expression too large to display}\) \(1523\)

Input:

int(x^2/(c*x^2+a)^(3/2)/(f*x^2+e*x+d),x,method=_RETURNVERBOSE)
 

Output:

1/f*x/a/(c*x^2+a)^(1/2)-1/2/f^2*(e*(-4*d*f+e^2)^(1/2)+2*d*f-e^2)/(-4*d*f+e 
^2)^(1/2)*(2/(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*d*f*c+c*e^2)*f^2/(c*(x-1/2 
/f*(-e+(-4*d*f+e^2)^(1/2)))^2-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2/f*(-e+(-4* 
d*f+e^2)^(1/2)))+1/2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*d*f*c+c*e^2)/f^2)^ 
(1/2)+2*c*(e-(-4*d*f+e^2)^(1/2))*f/(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*d*f* 
c+c*e^2)*(2*c*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))-c*(e-(-4*d*f+e^2)^(1/2))/f 
)/(2*c*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*d*f*c+c*e^2)/f^2-c^2*(e-(-4*d*f+ 
e^2)^(1/2))^2/f^2)/(c*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))^2-c*(e-(-4*d*f+e^2 
)^(1/2))/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+1/2*(-(-4*d*f+e^2)^(1/2)*c*e+ 
2*a*f^2-2*d*f*c+c*e^2)/f^2)^(1/2)-2/(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*d*f 
*c+c*e^2)*f^2*2^(1/2)/((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*d*f*c+c*e^2)/f^2 
)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*d*f*c+c*e^2)/f^2-c*(e-(-4*d 
*f+e^2)^(1/2))/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+1/2*2^(1/2)*((-(-4*d*f+ 
e^2)^(1/2)*c*e+2*a*f^2-2*d*f*c+c*e^2)/f^2)^(1/2)*(4*c*(x-1/2/f*(-e+(-4*d*f 
+e^2)^(1/2)))^2-4*c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/ 
2)))+2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*d*f*c+c*e^2)/f^2)^(1/2))/(x-1/2/ 
f*(-e+(-4*d*f+e^2)^(1/2)))))-1/2/f^2*(e^2-2*d*f+e*(-4*d*f+e^2)^(1/2))/(-4* 
d*f+e^2)^(1/2)*(2/((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*d*f*c+c*e^2)*f^2/(c*(x 
+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4* 
d*f+e^2)^(1/2))/f)+1/2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*d*f*c+c*e^2)/f...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 26116 vs. \(2 (369) = 738\).

Time = 93.93 (sec) , antiderivative size = 26116, normalized size of antiderivative = 63.70 \[ \int \frac {x^2}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx=\text {Too large to display} \] Input:

integrate(x^2/(c*x^2+a)^(3/2)/(f*x^2+e*x+d),x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F]

\[ \int \frac {x^2}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx=\int \frac {x^{2}}{\left (a + c x^{2}\right )^{\frac {3}{2}} \left (d + e x + f x^{2}\right )}\, dx \] Input:

integrate(x**2/(c*x**2+a)**(3/2)/(f*x**2+e*x+d),x)
 

Output:

Integral(x**2/((a + c*x**2)**(3/2)*(d + e*x + f*x**2)), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {x^2}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(x^2/(c*x^2+a)^(3/2)/(f*x^2+e*x+d),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*d*f-e^2>0)', see `assume?` for 
 more deta
 

Giac [F(-1)]

Timed out. \[ \int \frac {x^2}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx=\text {Timed out} \] Input:

integrate(x^2/(c*x^2+a)^(3/2)/(f*x^2+e*x+d),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx=\int \frac {x^2}{{\left (c\,x^2+a\right )}^{3/2}\,\left (f\,x^2+e\,x+d\right )} \,d x \] Input:

int(x^2/((a + c*x^2)^(3/2)*(d + e*x + f*x^2)),x)
 

Output:

int(x^2/((a + c*x^2)^(3/2)*(d + e*x + f*x^2)), x)
 

Reduce [F]

\[ \int \frac {x^2}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx=\int \frac {\sqrt {c \,x^{2}+a}\, x^{2}}{c^{2} f \,x^{6}+c^{2} e \,x^{5}+2 a c f \,x^{4}+c^{2} d \,x^{4}+2 a c e \,x^{3}+a^{2} f \,x^{2}+2 a c d \,x^{2}+a^{2} e x +a^{2} d}d x \] Input:

int(x^2/(c*x^2+a)^(3/2)/(f*x^2+e*x+d),x)
 

Output:

int((sqrt(a + c*x**2)*x**2)/(a**2*d + a**2*e*x + a**2*f*x**2 + 2*a*c*d*x** 
2 + 2*a*c*e*x**3 + 2*a*c*f*x**4 + c**2*d*x**4 + c**2*e*x**5 + c**2*f*x**6) 
,x)