\(\int \frac {1}{(a+c x^2)^{3/2} (d+e x+f x^2)} \, dx\) [41]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 416 \[ \int \frac {1}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx=\frac {c (a e+(c d-a f) x)}{a \left (a c e^2+(c d-a f)^2\right ) \sqrt {a+c x^2}}-\frac {f \left (2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )\right ) \text {arctanh}\left (\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right ) \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )}}+\frac {f \left (2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )\right ) \text {arctanh}\left (\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \left (a c e^2+(c d-a f)^2\right ) \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )}} \] Output:

c*(a*e+(-a*f+c*d)*x)/a/(a*c*e^2+(-a*f+c*d)^2)/(c*x^2+a)^(1/2)-1/2*f*(2*a*f 
^2+c*(e^2-2*d*f+e*(-4*d*f+e^2)^(1/2)))*arctanh(1/2*(2*a*f-c*(e-(-4*d*f+e^2 
)^(1/2))*x)*2^(1/2)/(2*a*f^2+c*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2)))^(1/2)/(c* 
x^2+a)^(1/2))*2^(1/2)/(-4*d*f+e^2)^(1/2)/(a*c*e^2+(-a*f+c*d)^2)/(2*a*f^2+c 
*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2)))^(1/2)+1/2*f*(2*a*f^2+c*(e^2-2*d*f-e*(-4 
*d*f+e^2)^(1/2)))*arctanh(1/2*(2*a*f-c*(e+(-4*d*f+e^2)^(1/2))*x)*2^(1/2)/( 
2*a*f^2+c*(e^2-2*d*f+e*(-4*d*f+e^2)^(1/2)))^(1/2)/(c*x^2+a)^(1/2))*2^(1/2) 
/(-4*d*f+e^2)^(1/2)/(a*c*e^2+(-a*f+c*d)^2)/(2*a*f^2+c*(e^2-2*d*f+e*(-4*d*f 
+e^2)^(1/2)))^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.67 (sec) , antiderivative size = 346, normalized size of antiderivative = 0.83 \[ \int \frac {1}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx=\frac {c (c d x+a (e-f x))-a \sqrt {a+c x^2} \text {RootSum}\left [a^2 f+2 a \sqrt {c} e \text {$\#$1}+4 c d \text {$\#$1}^2-2 a f \text {$\#$1}^2-2 \sqrt {c} e \text {$\#$1}^3+f \text {$\#$1}^4\&,\frac {a c e f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right )+2 c^{3/2} e^2 \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}-2 c^{3/2} d f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}+2 a \sqrt {c} f^2 \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}-c e f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{a \sqrt {c} e+4 c d \text {$\#$1}-2 a f \text {$\#$1}-3 \sqrt {c} e \text {$\#$1}^2+2 f \text {$\#$1}^3}\&\right ]}{a \left (c^2 d^2+a^2 f^2+a c \left (e^2-2 d f\right )\right ) \sqrt {a+c x^2}} \] Input:

Integrate[1/((a + c*x^2)^(3/2)*(d + e*x + f*x^2)),x]
 

Output:

(c*(c*d*x + a*(e - f*x)) - a*Sqrt[a + c*x^2]*RootSum[a^2*f + 2*a*Sqrt[c]*e 
*#1 + 4*c*d*#1^2 - 2*a*f*#1^2 - 2*Sqrt[c]*e*#1^3 + f*#1^4 & , (a*c*e*f*Log 
[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1] + 2*c^(3/2)*e^2*Log[-(Sqrt[c]*x) + S 
qrt[a + c*x^2] - #1]*#1 - 2*c^(3/2)*d*f*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] 
 - #1]*#1 + 2*a*Sqrt[c]*f^2*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1 - 
c*e*f*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1^2)/(a*Sqrt[c]*e + 4*c*d* 
#1 - 2*a*f*#1 - 3*Sqrt[c]*e*#1^2 + 2*f*#1^3) & ])/(a*(c^2*d^2 + a^2*f^2 + 
a*c*(e^2 - 2*d*f))*Sqrt[a + c*x^2])
 

Rubi [A] (verified)

Time = 0.58 (sec) , antiderivative size = 399, normalized size of antiderivative = 0.96, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {1307, 27, 1367, 488, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx\)

\(\Big \downarrow \) 1307

\(\displaystyle \frac {c (x (c d-a f)+a e)}{a \sqrt {a+c x^2} \left ((c d-a f)^2+a c e^2\right )}-\frac {\int -\frac {2 a c \left (a f^2+c e x f+c \left (e^2-d f\right )\right )}{\sqrt {c x^2+a} \left (f x^2+e x+d\right )}dx}{2 a c \left ((c d-a f)^2+a c e^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a f^2+c e x f+c \left (e^2-d f\right )}{\sqrt {c x^2+a} \left (f x^2+e x+d\right )}dx}{(c d-a f)^2+a c e^2}+\frac {c (x (c d-a f)+a e)}{a \sqrt {a+c x^2} \left ((c d-a f)^2+a c e^2\right )}\)

\(\Big \downarrow \) 1367

\(\displaystyle \frac {\frac {f \left (2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )\right ) \int \frac {1}{\left (e+2 f x-\sqrt {e^2-4 d f}\right ) \sqrt {c x^2+a}}dx}{\sqrt {e^2-4 d f}}-\frac {f \left (2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )\right ) \int \frac {1}{\left (e+2 f x+\sqrt {e^2-4 d f}\right ) \sqrt {c x^2+a}}dx}{\sqrt {e^2-4 d f}}}{(c d-a f)^2+a c e^2}+\frac {c (x (c d-a f)+a e)}{a \sqrt {a+c x^2} \left ((c d-a f)^2+a c e^2\right )}\)

\(\Big \downarrow \) 488

\(\displaystyle \frac {\frac {f \left (2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )\right ) \int \frac {1}{4 a f^2+c \left (e+\sqrt {e^2-4 d f}\right )^2-\frac {\left (2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x\right )^2}{c x^2+a}}d\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {c x^2+a}}}{\sqrt {e^2-4 d f}}-\frac {f \left (2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )\right ) \int \frac {1}{4 a f^2+c \left (e-\sqrt {e^2-4 d f}\right )^2-\frac {\left (2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x\right )^2}{c x^2+a}}d\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {c x^2+a}}}{\sqrt {e^2-4 d f}}}{(c d-a f)^2+a c e^2}+\frac {c (x (c d-a f)+a e)}{a \sqrt {a+c x^2} \left ((c d-a f)^2+a c e^2\right )}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {f \left (2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )\right ) \text {arctanh}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {f \left (2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )\right ) \text {arctanh}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}}{(c d-a f)^2+a c e^2}+\frac {c (x (c d-a f)+a e)}{a \sqrt {a+c x^2} \left ((c d-a f)^2+a c e^2\right )}\)

Input:

Int[1/((a + c*x^2)^(3/2)*(d + e*x + f*x^2)),x]
 

Output:

(c*(a*e + (c*d - a*f)*x))/(a*(a*c*e^2 + (c*d - a*f)^2)*Sqrt[a + c*x^2]) + 
(-((f*(2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f]))*ArcTanh[(2*a*f - c 
*(e - Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqr 
t[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^ 
2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])])) + (f*(2*a*f^2 + c*(e^2 - 2*d* 
f - e*Sqrt[e^2 - 4*d*f]))*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*x)/(S 
qrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^ 
2])])/(Sqrt[2]*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^ 
2 - 4*d*f])]))/(a*c*e^2 + (c*d - a*f)^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 488
Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> -Subst[ 
Int[1/(b*c^2 + a*d^2 - x^2), x], x, (a*d - b*c*x)/Sqrt[a + b*x^2]] /; FreeQ 
[{a, b, c, d}, x]
 

rule 1307
Int[((a_.) + (c_.)*(x_)^2)^(p_)*((d_.) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x 
_Symbol] :> Simp[(2*a*c^2*e + c*(2*c^2*d - c*(2*a*f))*x)*(a + c*x^2)^(p + 1 
)*((d + e*x + f*x^2)^(q + 1)/((-4*a*c)*(a*c*e^2 + (c*d - a*f)^2)*(p + 1))), 
 x] - Simp[1/((-4*a*c)*(a*c*e^2 + (c*d - a*f)^2)*(p + 1))   Int[(a + c*x^2) 
^(p + 1)*(d + e*x + f*x^2)^q*Simp[2*c*((c*d - a*f)^2 - ((-a)*e)*(c*e))*(p + 
 1) - (2*c^2*d - c*(2*a*f))*(a*f*(p + 1) - c*d*(p + 2)) - e*(-2*a*c^2*e)*(p 
 + q + 2) + (2*f*(2*a*c^2*e)*(p + q + 2) - (2*c^2*d - c*(2*a*f))*((-c)*e*(2 
*p + q + 4)))*x + c*f*(2*c^2*d - c*(2*a*f))*(2*p + 2*q + 5)*x^2, x], x], x] 
 /; FreeQ[{a, c, d, e, f, q}, x] && NeQ[e^2 - 4*d*f, 0] && LtQ[p, -1] && Ne 
Q[a*c*e^2 + (c*d - a*f)^2, 0] &&  !( !IntegerQ[p] && ILtQ[q, -1]) &&  !IGtQ 
[q, 0]
 

rule 1367
Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (f 
_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(2*c*g - h*( 
b - q))/q   Int[1/((b - q + 2*c*x)*Sqrt[d + f*x^2]), x], x] - Simp[(2*c*g - 
 h*(b + q))/q   Int[1/((b + q + 2*c*x)*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{ 
a, b, c, d, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1456\) vs. \(2(377)=754\).

Time = 2.12 (sec) , antiderivative size = 1457, normalized size of antiderivative = 3.50

method result size
default \(\text {Expression too large to display}\) \(1457\)

Input:

int(1/(c*x^2+a)^(3/2)/(f*x^2+e*x+d),x,method=_RETURNVERBOSE)
 

Output:

1/(-4*d*f+e^2)^(1/2)*(2/(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*d*f*c+c*e^2)*f^ 
2/(c*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))^2-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2 
/f*(-e+(-4*d*f+e^2)^(1/2)))+1/2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*d*f*c+c 
*e^2)/f^2)^(1/2)+2*c*(e-(-4*d*f+e^2)^(1/2))*f/(-(-4*d*f+e^2)^(1/2)*c*e+2*a 
*f^2-2*d*f*c+c*e^2)*(2*c*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))-c*(e-(-4*d*f+e^ 
2)^(1/2))/f)/(2*c*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*d*f*c+c*e^2)/f^2-c^2* 
(e-(-4*d*f+e^2)^(1/2))^2/f^2)/(c*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))^2-c*(e- 
(-4*d*f+e^2)^(1/2))/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+1/2*(-(-4*d*f+e^2) 
^(1/2)*c*e+2*a*f^2-2*d*f*c+c*e^2)/f^2)^(1/2)-2/(-(-4*d*f+e^2)^(1/2)*c*e+2* 
a*f^2-2*d*f*c+c*e^2)*f^2*2^(1/2)/((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*d*f*c 
+c*e^2)/f^2)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*d*f*c+c*e^2)/f^2 
-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+1/2*2^(1/2)* 
((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*d*f*c+c*e^2)/f^2)^(1/2)*(4*c*(x-1/2/f* 
(-e+(-4*d*f+e^2)^(1/2)))^2-4*c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2/f*(-e+(-4*d 
*f+e^2)^(1/2)))+2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*d*f*c+c*e^2)/f^2)^(1/ 
2))/(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))))-1/(-4*d*f+e^2)^(1/2)*(2/((-4*d*f+e 
^2)^(1/2)*c*e+2*a*f^2-2*d*f*c+c*e^2)*f^2/(c*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/ 
f)^2-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*((-4* 
d*f+e^2)^(1/2)*c*e+2*a*f^2-2*d*f*c+c*e^2)/f^2)^(1/2)+2*c*(e+(-4*d*f+e^2)^( 
1/2))*f/((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*d*f*c+c*e^2)*(2*c*(x+1/2*(e+(...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 27447 vs. \(2 (375) = 750\).

Time = 65.77 (sec) , antiderivative size = 27447, normalized size of antiderivative = 65.98 \[ \int \frac {1}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx=\text {Too large to display} \] Input:

integrate(1/(c*x^2+a)^(3/2)/(f*x^2+e*x+d),x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F]

\[ \int \frac {1}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx=\int \frac {1}{\left (a + c x^{2}\right )^{\frac {3}{2}} \left (d + e x + f x^{2}\right )}\, dx \] Input:

integrate(1/(c*x**2+a)**(3/2)/(f*x**2+e*x+d),x)
 

Output:

Integral(1/((a + c*x**2)**(3/2)*(d + e*x + f*x**2)), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(1/(c*x^2+a)^(3/2)/(f*x^2+e*x+d),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*d*f-e^2>0)', see `assume?` for 
 more deta
 

Giac [F(-1)]

Timed out. \[ \int \frac {1}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx=\text {Timed out} \] Input:

integrate(1/(c*x^2+a)^(3/2)/(f*x^2+e*x+d),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx=\int \frac {1}{{\left (c\,x^2+a\right )}^{3/2}\,\left (f\,x^2+e\,x+d\right )} \,d x \] Input:

int(1/((a + c*x^2)^(3/2)*(d + e*x + f*x^2)),x)
 

Output:

int(1/((a + c*x^2)^(3/2)*(d + e*x + f*x^2)), x)
 

Reduce [F]

\[ \int \frac {1}{\left (a+c x^2\right )^{3/2} \left (d+e x+f x^2\right )} \, dx=\int \frac {\sqrt {c \,x^{2}+a}}{c^{2} f \,x^{6}+c^{2} e \,x^{5}+2 a c f \,x^{4}+c^{2} d \,x^{4}+2 a c e \,x^{3}+a^{2} f \,x^{2}+2 a c d \,x^{2}+a^{2} e x +a^{2} d}d x \] Input:

int(1/(c*x^2+a)^(3/2)/(f*x^2+e*x+d),x)
 

Output:

int(sqrt(a + c*x**2)/(a**2*d + a**2*e*x + a**2*f*x**2 + 2*a*c*d*x**2 + 2*a 
*c*e*x**3 + 2*a*c*f*x**4 + c**2*d*x**4 + c**2*e*x**5 + c**2*f*x**6),x)