\(\int \frac {x^4}{\sqrt {a+b x+c x^2} (d-f x^2)} \, dx\) [61]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 336 \[ \int \frac {x^4}{\sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx=\frac {3 b \sqrt {a+b x+c x^2}}{4 c^2 f}-\frac {x \sqrt {a+b x+c x^2}}{2 c f}-\frac {\left (8 c^2 d+3 b^2 f-4 a c f\right ) \text {arctanh}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{8 c^{5/2} f^2}+\frac {d^{3/2} \text {arctanh}\left (\frac {b \sqrt {d}-2 a \sqrt {f}+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x}{2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 f^2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f}}+\frac {d^{3/2} \text {arctanh}\left (\frac {b \sqrt {d}+2 a \sqrt {f}+\left (2 c \sqrt {d}+b \sqrt {f}\right ) x}{2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 f^2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f}} \] Output:

3/4*b*(c*x^2+b*x+a)^(1/2)/c^2/f-1/2*x*(c*x^2+b*x+a)^(1/2)/c/f-1/8*(-4*a*c* 
f+3*b^2*f+8*c^2*d)*arctanh(1/2*(2*c*x+b)/c^(1/2)/(c*x^2+b*x+a)^(1/2))/c^(5 
/2)/f^2+1/2*d^(3/2)*arctanh(1/2*(b*d^(1/2)-2*a*f^(1/2)+(2*c*d^(1/2)-b*f^(1 
/2))*x)/(c*d-b*d^(1/2)*f^(1/2)+a*f)^(1/2)/(c*x^2+b*x+a)^(1/2))/f^2/(c*d-b* 
d^(1/2)*f^(1/2)+a*f)^(1/2)+1/2*d^(3/2)*arctanh(1/2*(b*d^(1/2)+2*a*f^(1/2)+ 
(2*c*d^(1/2)+b*f^(1/2))*x)/(c*d+b*d^(1/2)*f^(1/2)+a*f)^(1/2)/(c*x^2+b*x+a) 
^(1/2))/f^2/(c*d+b*d^(1/2)*f^(1/2)+a*f)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.98 (sec) , antiderivative size = 252, normalized size of antiderivative = 0.75 \[ \int \frac {x^4}{\sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx=\frac {2 \sqrt {c} f (3 b-2 c x) \sqrt {a+x (b+c x)}+\left (8 c^2 d+3 b^2 f-4 a c f\right ) \log \left (c^2 f^2 \left (b+2 c x-2 \sqrt {c} \sqrt {a+x (b+c x)}\right )\right )-4 c^{5/2} d^2 \text {RootSum}\left [b^2 d-a^2 f-4 b \sqrt {c} d \text {$\#$1}+4 c d \text {$\#$1}^2+2 a f \text {$\#$1}^2-f \text {$\#$1}^4\&,\frac {b \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-2 \sqrt {c} \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}}{b \sqrt {c} d-2 c d \text {$\#$1}-a f \text {$\#$1}+f \text {$\#$1}^3}\&\right ]}{8 c^{5/2} f^2} \] Input:

Integrate[x^4/(Sqrt[a + b*x + c*x^2]*(d - f*x^2)),x]
 

Output:

(2*Sqrt[c]*f*(3*b - 2*c*x)*Sqrt[a + x*(b + c*x)] + (8*c^2*d + 3*b^2*f - 4* 
a*c*f)*Log[c^2*f^2*(b + 2*c*x - 2*Sqrt[c]*Sqrt[a + x*(b + c*x)])] - 4*c^(5 
/2)*d^2*RootSum[b^2*d - a^2*f - 4*b*Sqrt[c]*d*#1 + 4*c*d*#1^2 + 2*a*f*#1^2 
 - f*#1^4 & , (b*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - 2*Sqrt[c 
]*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1)/(b*Sqrt[c]*d - 2*c*d* 
#1 - a*f*#1 + f*#1^3) & ])/(8*c^(5/2)*f^2)
 

Rubi [A] (verified)

Time = 0.95 (sec) , antiderivative size = 369, normalized size of antiderivative = 1.10, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4}{\left (d-f x^2\right ) \sqrt {a+b x+c x^2}} \, dx\)

\(\Big \downarrow \) 7276

\(\displaystyle \int \left (\frac {d^2}{f^2 \left (d-f x^2\right ) \sqrt {a+b x+c x^2}}-\frac {d}{f^2 \sqrt {a+b x+c x^2}}-\frac {x^2}{f \sqrt {a+b x+c x^2}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\left (3 b^2-4 a c\right ) \text {arctanh}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{8 c^{5/2} f}+\frac {d^{3/2} \text {arctanh}\left (\frac {-2 a \sqrt {f}+x \left (2 c \sqrt {d}-b \sqrt {f}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}}\right )}{2 f^2 \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}}+\frac {d^{3/2} \text {arctanh}\left (\frac {2 a \sqrt {f}+x \left (b \sqrt {f}+2 c \sqrt {d}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}\right )}{2 f^2 \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}-\frac {d \text {arctanh}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c} f^2}+\frac {3 b \sqrt {a+b x+c x^2}}{4 c^2 f}-\frac {x \sqrt {a+b x+c x^2}}{2 c f}\)

Input:

Int[x^4/(Sqrt[a + b*x + c*x^2]*(d - f*x^2)),x]
 

Output:

(3*b*Sqrt[a + b*x + c*x^2])/(4*c^2*f) - (x*Sqrt[a + b*x + c*x^2])/(2*c*f) 
- (d*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(Sqrt[c]*f^2) 
 - ((3*b^2 - 4*a*c)*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])] 
)/(8*c^(5/2)*f) + (d^(3/2)*ArcTanh[(b*Sqrt[d] - 2*a*Sqrt[f] + (2*c*Sqrt[d] 
 - b*Sqrt[f])*x)/(2*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x 
^2])])/(2*f^2*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]) + (d^(3/2)*ArcTanh[(b*S 
qrt[d] + 2*a*Sqrt[f] + (2*c*Sqrt[d] + b*Sqrt[f])*x)/(2*Sqrt[c*d + b*Sqrt[d 
]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x^2])])/(2*f^2*Sqrt[c*d + b*Sqrt[d]*Sqrt 
[f] + a*f])
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
Maple [A] (verified)

Time = 2.72 (sec) , antiderivative size = 463, normalized size of antiderivative = 1.38

method result size
risch \(\frac {\left (-2 c x +3 b \right ) \sqrt {c \,x^{2}+b x +a}}{4 c^{2} f}+\frac {\frac {\left (4 a c f -3 b^{2} f -8 c^{2} d \right ) \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{f \sqrt {c}}+\frac {4 c^{2} d^{2} \ln \left (\frac {\frac {2 b \sqrt {d f}+2 a f +2 c d}{f}+\frac {\left (2 c \sqrt {d f}+f b \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {b \sqrt {d f}+a f +c d}{f}}\, \sqrt {c \left (x -\frac {\sqrt {d f}}{f}\right )^{2}+\frac {\left (2 c \sqrt {d f}+f b \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+\frac {b \sqrt {d f}+a f +c d}{f}}}{x -\frac {\sqrt {d f}}{f}}\right )}{\sqrt {d f}\, f \sqrt {\frac {b \sqrt {d f}+a f +c d}{f}}}-\frac {4 c^{2} d^{2} \ln \left (\frac {\frac {-2 b \sqrt {d f}+2 a f +2 c d}{f}+\frac {\left (-2 c \sqrt {d f}+f b \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {-b \sqrt {d f}+a f +c d}{f}}\, \sqrt {c \left (x +\frac {\sqrt {d f}}{f}\right )^{2}+\frac {\left (-2 c \sqrt {d f}+f b \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+\frac {-b \sqrt {d f}+a f +c d}{f}}}{x +\frac {\sqrt {d f}}{f}}\right )}{\sqrt {d f}\, f \sqrt {\frac {-b \sqrt {d f}+a f +c d}{f}}}}{8 c^{2} f}\) \(463\)
default \(-\frac {d \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{f^{2} \sqrt {c}}-\frac {\frac {x \sqrt {c \,x^{2}+b x +a}}{2 c}-\frac {3 b \left (\frac {\sqrt {c \,x^{2}+b x +a}}{c}-\frac {b \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{2 c^{\frac {3}{2}}}\right )}{4 c}-\frac {a \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{2 c^{\frac {3}{2}}}}{f}+\frac {d^{2} \ln \left (\frac {\frac {2 b \sqrt {d f}+2 a f +2 c d}{f}+\frac {\left (2 c \sqrt {d f}+f b \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {b \sqrt {d f}+a f +c d}{f}}\, \sqrt {c \left (x -\frac {\sqrt {d f}}{f}\right )^{2}+\frac {\left (2 c \sqrt {d f}+f b \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+\frac {b \sqrt {d f}+a f +c d}{f}}}{x -\frac {\sqrt {d f}}{f}}\right )}{2 f^{2} \sqrt {d f}\, \sqrt {\frac {b \sqrt {d f}+a f +c d}{f}}}-\frac {d^{2} \ln \left (\frac {\frac {-2 b \sqrt {d f}+2 a f +2 c d}{f}+\frac {\left (-2 c \sqrt {d f}+f b \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {-b \sqrt {d f}+a f +c d}{f}}\, \sqrt {c \left (x +\frac {\sqrt {d f}}{f}\right )^{2}+\frac {\left (-2 c \sqrt {d f}+f b \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+\frac {-b \sqrt {d f}+a f +c d}{f}}}{x +\frac {\sqrt {d f}}{f}}\right )}{2 f^{2} \sqrt {d f}\, \sqrt {\frac {-b \sqrt {d f}+a f +c d}{f}}}\) \(513\)

Input:

int(x^4/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x,method=_RETURNVERBOSE)
 

Output:

1/4*(-2*c*x+3*b)/c^2*(c*x^2+b*x+a)^(1/2)/f+1/8/c^2/f*(1/f*(4*a*c*f-3*b^2*f 
-8*c^2*d)*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2))/c^(1/2)+4*c^2*d^2/(d 
*f)^(1/2)/f/((b*(d*f)^(1/2)+a*f+c*d)/f)^(1/2)*ln((2*(b*(d*f)^(1/2)+a*f+c*d 
)/f+(2*c*(d*f)^(1/2)+f*b)/f*(x-(d*f)^(1/2)/f)+2*((b*(d*f)^(1/2)+a*f+c*d)/f 
)^(1/2)*(c*(x-(d*f)^(1/2)/f)^2+(2*c*(d*f)^(1/2)+f*b)/f*(x-(d*f)^(1/2)/f)+( 
b*(d*f)^(1/2)+a*f+c*d)/f)^(1/2))/(x-(d*f)^(1/2)/f))-4*c^2*d^2/(d*f)^(1/2)/ 
f/(1/f*(-b*(d*f)^(1/2)+a*f+c*d))^(1/2)*ln((2/f*(-b*(d*f)^(1/2)+a*f+c*d)+1/ 
f*(-2*c*(d*f)^(1/2)+f*b)*(x+(d*f)^(1/2)/f)+2*(1/f*(-b*(d*f)^(1/2)+a*f+c*d) 
)^(1/2)*(c*(x+(d*f)^(1/2)/f)^2+1/f*(-2*c*(d*f)^(1/2)+f*b)*(x+(d*f)^(1/2)/f 
)+1/f*(-b*(d*f)^(1/2)+a*f+c*d))^(1/2))/(x+(d*f)^(1/2)/f)))
 

Fricas [F(-1)]

Timed out. \[ \int \frac {x^4}{\sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx=\text {Timed out} \] Input:

integrate(x^4/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {x^4}{\sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx=- \int \frac {x^{4}}{- d \sqrt {a + b x + c x^{2}} + f x^{2} \sqrt {a + b x + c x^{2}}}\, dx \] Input:

integrate(x**4/(c*x**2+b*x+a)**(1/2)/(-f*x**2+d),x)
 

Output:

-Integral(x**4/(-d*sqrt(a + b*x + c*x**2) + f*x**2*sqrt(a + b*x + c*x**2)) 
, x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {x^4}{\sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(x^4/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(((c*sqrt(4*d*f))/(2*f^2)>0)', se 
e `assume?
 

Giac [F(-2)]

Exception generated. \[ \int \frac {x^4}{\sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(x^4/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument Type
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^4}{\sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx=\int \frac {x^4}{\left (d-f\,x^2\right )\,\sqrt {c\,x^2+b\,x+a}} \,d x \] Input:

int(x^4/((d - f*x^2)*(a + b*x + c*x^2)^(1/2)),x)
 

Output:

int(x^4/((d - f*x^2)*(a + b*x + c*x^2)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {x^4}{\sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx=\int \frac {x^{4}}{\sqrt {c \,x^{2}+b x +a}\, \left (-f \,x^{2}+d \right )}d x \] Input:

int(x^4/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x)
 

Output:

int(x^4/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x)