\(\int \frac {(1+4 x-7 x^2) (2+5 x+x^2)}{\sqrt {3+2 x+5 x^2}} \, dx\) [16]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 33, antiderivative size = 101 \[ \int \frac {\left (1+4 x-7 x^2\right ) \left (2+5 x+x^2\right )}{\sqrt {3+2 x+5 x^2}} \, dx=\frac {463}{125} \sqrt {3+2 x+5 x^2}+\frac {59}{30} x \sqrt {3+2 x+5 x^2}-\frac {571}{300} x^2 \sqrt {3+2 x+5 x^2}-\frac {7}{20} x^3 \sqrt {3+2 x+5 x^2}-\frac {1901 \text {arcsinh}\left (\frac {1+5 x}{\sqrt {14}}\right )}{250 \sqrt {5}} \] Output:

463/125*(5*x^2+2*x+3)^(1/2)+59/30*x*(5*x^2+2*x+3)^(1/2)-571/300*x^2*(5*x^2 
+2*x+3)^(1/2)-7/20*x^3*(5*x^2+2*x+3)^(1/2)-1901/1250*arcsinh(1/14*(1+5*x)* 
14^(1/2))*5^(1/2)
 

Mathematica [A] (verified)

Time = 0.48 (sec) , antiderivative size = 69, normalized size of antiderivative = 0.68 \[ \int \frac {\left (1+4 x-7 x^2\right ) \left (2+5 x+x^2\right )}{\sqrt {3+2 x+5 x^2}} \, dx=\frac {\sqrt {3+2 x+5 x^2} \left (5556+2950 x-2855 x^2-525 x^3\right )}{1500}+\frac {1901 \log \left (-1-5 x+\sqrt {5} \sqrt {3+2 x+5 x^2}\right )}{250 \sqrt {5}} \] Input:

Integrate[((1 + 4*x - 7*x^2)*(2 + 5*x + x^2))/Sqrt[3 + 2*x + 5*x^2],x]
 

Output:

(Sqrt[3 + 2*x + 5*x^2]*(5556 + 2950*x - 2855*x^2 - 525*x^3))/1500 + (1901* 
Log[-1 - 5*x + Sqrt[5]*Sqrt[3 + 2*x + 5*x^2]])/(250*Sqrt[5])
 

Rubi [A] (verified)

Time = 0.61 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.14, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.242, Rules used = {2192, 2192, 27, 2192, 27, 1160, 1090, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (-7 x^2+4 x+1\right ) \left (x^2+5 x+2\right )}{\sqrt {5 x^2+2 x+3}} \, dx\)

\(\Big \downarrow \) 2192

\(\displaystyle \frac {1}{20} \int \frac {-571 x^3+203 x^2+260 x+40}{\sqrt {5 x^2+2 x+3}}dx-\frac {7}{20} x^3 \sqrt {5 x^2+2 x+3}\)

\(\Big \downarrow \) 2192

\(\displaystyle \frac {1}{20} \left (\frac {1}{15} \int \frac {2 \left (2950 x^2+3663 x+300\right )}{\sqrt {5 x^2+2 x+3}}dx-\frac {571}{15} x^2 \sqrt {5 x^2+2 x+3}\right )-\frac {7}{20} x^3 \sqrt {5 x^2+2 x+3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{20} \left (\frac {2}{15} \int \frac {2950 x^2+3663 x+300}{\sqrt {5 x^2+2 x+3}}dx-\frac {571}{15} x^2 \sqrt {5 x^2+2 x+3}\right )-\frac {7}{20} x^3 \sqrt {5 x^2+2 x+3}\)

\(\Big \downarrow \) 2192

\(\displaystyle \frac {1}{20} \left (\frac {2}{15} \left (\frac {1}{10} \int -\frac {30 (195-926 x)}{\sqrt {5 x^2+2 x+3}}dx+295 \sqrt {5 x^2+2 x+3} x\right )-\frac {571}{15} x^2 \sqrt {5 x^2+2 x+3}\right )-\frac {7}{20} x^3 \sqrt {5 x^2+2 x+3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{20} \left (\frac {2}{15} \left (295 x \sqrt {5 x^2+2 x+3}-3 \int \frac {195-926 x}{\sqrt {5 x^2+2 x+3}}dx\right )-\frac {571}{15} x^2 \sqrt {5 x^2+2 x+3}\right )-\frac {7}{20} x^3 \sqrt {5 x^2+2 x+3}\)

\(\Big \downarrow \) 1160

\(\displaystyle \frac {1}{20} \left (\frac {2}{15} \left (295 x \sqrt {5 x^2+2 x+3}-3 \left (\frac {1901}{5} \int \frac {1}{\sqrt {5 x^2+2 x+3}}dx-\frac {926}{5} \sqrt {5 x^2+2 x+3}\right )\right )-\frac {571}{15} x^2 \sqrt {5 x^2+2 x+3}\right )-\frac {7}{20} x^3 \sqrt {5 x^2+2 x+3}\)

\(\Big \downarrow \) 1090

\(\displaystyle \frac {1}{20} \left (\frac {2}{15} \left (295 x \sqrt {5 x^2+2 x+3}-3 \left (\frac {1901 \int \frac {1}{\sqrt {\frac {1}{56} (10 x+2)^2+1}}d(10 x+2)}{10 \sqrt {70}}-\frac {926}{5} \sqrt {5 x^2+2 x+3}\right )\right )-\frac {571}{15} x^2 \sqrt {5 x^2+2 x+3}\right )-\frac {7}{20} x^3 \sqrt {5 x^2+2 x+3}\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {1}{20} \left (\frac {2}{15} \left (295 x \sqrt {5 x^2+2 x+3}-3 \left (\frac {1901 \text {arcsinh}\left (\frac {10 x+2}{2 \sqrt {14}}\right )}{5 \sqrt {5}}-\frac {926}{5} \sqrt {5 x^2+2 x+3}\right )\right )-\frac {571}{15} x^2 \sqrt {5 x^2+2 x+3}\right )-\frac {7}{20} x^3 \sqrt {5 x^2+2 x+3}\)

Input:

Int[((1 + 4*x - 7*x^2)*(2 + 5*x + x^2))/Sqrt[3 + 2*x + 5*x^2],x]
 

Output:

(-7*x^3*Sqrt[3 + 2*x + 5*x^2])/20 + ((-571*x^2*Sqrt[3 + 2*x + 5*x^2])/15 + 
 (2*(295*x*Sqrt[3 + 2*x + 5*x^2] - 3*((-926*Sqrt[3 + 2*x + 5*x^2])/5 + (19 
01*ArcSinh[(2 + 10*x)/(2*Sqrt[14])])/(5*Sqrt[5]))))/15)/20
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 1090
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/(2*c*(-4* 
(c/(b^2 - 4*a*c)))^p)   Subst[Int[Simp[1 - x^2/(b^2 - 4*a*c), x]^p, x], x, 
b + 2*c*x], x] /; FreeQ[{a, b, c, p}, x] && GtQ[4*a - b^2/c, 0]
 

rule 1160
Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol 
] :> Simp[e*((a + b*x + c*x^2)^(p + 1)/(2*c*(p + 1))), x] + Simp[(2*c*d - b 
*e)/(2*c)   Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] 
 && NeQ[p, -1]
 

rule 2192
Int[(Pq_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = 
Expon[Pq, x], e = Coeff[Pq, x, Expon[Pq, x]]}, Simp[e*x^(q - 1)*((a + b*x + 
 c*x^2)^(p + 1)/(c*(q + 2*p + 1))), x] + Simp[1/(c*(q + 2*p + 1))   Int[(a 
+ b*x + c*x^2)^p*ExpandToSum[c*(q + 2*p + 1)*Pq - a*e*(q - 1)*x^(q - 2) - b 
*e*(q + p)*x^(q - 1) - c*e*(q + 2*p + 1)*x^q, x], x], x]] /; FreeQ[{a, b, c 
, p}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] &&  !LeQ[p, -1]
 
Maple [A] (verified)

Time = 0.28 (sec) , antiderivative size = 45, normalized size of antiderivative = 0.45

method result size
risch \(-\frac {\left (525 x^{3}+2855 x^{2}-2950 x -5556\right ) \sqrt {5 x^{2}+2 x +3}}{1500}-\frac {1901 \sqrt {5}\, \operatorname {arcsinh}\left (\frac {5 \sqrt {14}\, \left (x +\frac {1}{5}\right )}{14}\right )}{1250}\) \(45\)
trager \(\left (-\frac {7}{20} x^{3}-\frac {571}{300} x^{2}+\frac {59}{30} x +\frac {463}{125}\right ) \sqrt {5 x^{2}+2 x +3}+\frac {1901 \operatorname {RootOf}\left (\textit {\_Z}^{2}-5\right ) \ln \left (-5 \operatorname {RootOf}\left (\textit {\_Z}^{2}-5\right ) x -\operatorname {RootOf}\left (\textit {\_Z}^{2}-5\right )+5 \sqrt {5 x^{2}+2 x +3}\right )}{1250}\) \(71\)
default \(-\frac {1901 \sqrt {5}\, \operatorname {arcsinh}\left (\frac {5 \sqrt {14}\, \left (x +\frac {1}{5}\right )}{14}\right )}{1250}+\frac {463 \sqrt {5 x^{2}+2 x +3}}{125}+\frac {59 x \sqrt {5 x^{2}+2 x +3}}{30}-\frac {571 x^{2} \sqrt {5 x^{2}+2 x +3}}{300}-\frac {7 x^{3} \sqrt {5 x^{2}+2 x +3}}{20}\) \(79\)

Input:

int((-7*x^2+4*x+1)*(x^2+5*x+2)/(5*x^2+2*x+3)^(1/2),x,method=_RETURNVERBOSE 
)
 

Output:

-1/1500*(525*x^3+2855*x^2-2950*x-5556)*(5*x^2+2*x+3)^(1/2)-1901/1250*5^(1/ 
2)*arcsinh(5/14*14^(1/2)*(x+1/5))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 67, normalized size of antiderivative = 0.66 \[ \int \frac {\left (1+4 x-7 x^2\right ) \left (2+5 x+x^2\right )}{\sqrt {3+2 x+5 x^2}} \, dx=-\frac {1}{1500} \, {\left (525 \, x^{3} + 2855 \, x^{2} - 2950 \, x - 5556\right )} \sqrt {5 \, x^{2} + 2 \, x + 3} + \frac {1901}{2500} \, \sqrt {5} \log \left (\sqrt {5} \sqrt {5 \, x^{2} + 2 \, x + 3} {\left (5 \, x + 1\right )} - 25 \, x^{2} - 10 \, x - 8\right ) \] Input:

integrate((-7*x^2+4*x+1)*(x^2+5*x+2)/(5*x^2+2*x+3)^(1/2),x, algorithm="fri 
cas")
 

Output:

-1/1500*(525*x^3 + 2855*x^2 - 2950*x - 5556)*sqrt(5*x^2 + 2*x + 3) + 1901/ 
2500*sqrt(5)*log(sqrt(5)*sqrt(5*x^2 + 2*x + 3)*(5*x + 1) - 25*x^2 - 10*x - 
 8)
                                                                                    
                                                                                    
 

Sympy [A] (verification not implemented)

Time = 0.38 (sec) , antiderivative size = 58, normalized size of antiderivative = 0.57 \[ \int \frac {\left (1+4 x-7 x^2\right ) \left (2+5 x+x^2\right )}{\sqrt {3+2 x+5 x^2}} \, dx=\sqrt {5 x^{2} + 2 x + 3} \left (- \frac {7 x^{3}}{20} - \frac {571 x^{2}}{300} + \frac {59 x}{30} + \frac {463}{125}\right ) - \frac {1901 \sqrt {5} \operatorname {asinh}{\left (\frac {5 \sqrt {14} \left (x + \frac {1}{5}\right )}{14} \right )}}{1250} \] Input:

integrate((-7*x**2+4*x+1)*(x**2+5*x+2)/(5*x**2+2*x+3)**(1/2),x)
 

Output:

sqrt(5*x**2 + 2*x + 3)*(-7*x**3/20 - 571*x**2/300 + 59*x/30 + 463/125) - 1 
901*sqrt(5)*asinh(5*sqrt(14)*(x + 1/5)/14)/1250
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.79 \[ \int \frac {\left (1+4 x-7 x^2\right ) \left (2+5 x+x^2\right )}{\sqrt {3+2 x+5 x^2}} \, dx=-\frac {7}{20} \, \sqrt {5 \, x^{2} + 2 \, x + 3} x^{3} - \frac {571}{300} \, \sqrt {5 \, x^{2} + 2 \, x + 3} x^{2} + \frac {59}{30} \, \sqrt {5 \, x^{2} + 2 \, x + 3} x - \frac {1901}{1250} \, \sqrt {5} \operatorname {arsinh}\left (\frac {1}{14} \, \sqrt {14} {\left (5 \, x + 1\right )}\right ) + \frac {463}{125} \, \sqrt {5 \, x^{2} + 2 \, x + 3} \] Input:

integrate((-7*x^2+4*x+1)*(x^2+5*x+2)/(5*x^2+2*x+3)^(1/2),x, algorithm="max 
ima")
 

Output:

-7/20*sqrt(5*x^2 + 2*x + 3)*x^3 - 571/300*sqrt(5*x^2 + 2*x + 3)*x^2 + 59/3 
0*sqrt(5*x^2 + 2*x + 3)*x - 1901/1250*sqrt(5)*arcsinh(1/14*sqrt(14)*(5*x + 
 1)) + 463/125*sqrt(5*x^2 + 2*x + 3)
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 62, normalized size of antiderivative = 0.61 \[ \int \frac {\left (1+4 x-7 x^2\right ) \left (2+5 x+x^2\right )}{\sqrt {3+2 x+5 x^2}} \, dx=-\frac {1}{1500} \, {\left (5 \, {\left ({\left (105 \, x + 571\right )} x - 590\right )} x - 5556\right )} \sqrt {5 \, x^{2} + 2 \, x + 3} + \frac {1901}{1250} \, \sqrt {5} \log \left (-\sqrt {5} {\left (\sqrt {5} x - \sqrt {5 \, x^{2} + 2 \, x + 3}\right )} - 1\right ) \] Input:

integrate((-7*x^2+4*x+1)*(x^2+5*x+2)/(5*x^2+2*x+3)^(1/2),x, algorithm="gia 
c")
 

Output:

-1/1500*(5*((105*x + 571)*x - 590)*x - 5556)*sqrt(5*x^2 + 2*x + 3) + 1901/ 
1250*sqrt(5)*log(-sqrt(5)*(sqrt(5)*x - sqrt(5*x^2 + 2*x + 3)) - 1)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (1+4 x-7 x^2\right ) \left (2+5 x+x^2\right )}{\sqrt {3+2 x+5 x^2}} \, dx=\int \frac {\left (x^2+5\,x+2\right )\,\left (-7\,x^2+4\,x+1\right )}{\sqrt {5\,x^2+2\,x+3}} \,d x \] Input:

int(((5*x + x^2 + 2)*(4*x - 7*x^2 + 1))/(2*x + 5*x^2 + 3)^(1/2),x)
 

Output:

int(((5*x + x^2 + 2)*(4*x - 7*x^2 + 1))/(2*x + 5*x^2 + 3)^(1/2), x)
 

Reduce [B] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.88 \[ \int \frac {\left (1+4 x-7 x^2\right ) \left (2+5 x+x^2\right )}{\sqrt {3+2 x+5 x^2}} \, dx=-\frac {7 \sqrt {5 x^{2}+2 x +3}\, x^{3}}{20}-\frac {571 \sqrt {5 x^{2}+2 x +3}\, x^{2}}{300}+\frac {59 \sqrt {5 x^{2}+2 x +3}\, x}{30}+\frac {463 \sqrt {5 x^{2}+2 x +3}}{125}-\frac {1901 \sqrt {5}\, \mathrm {log}\left (\frac {\sqrt {5 x^{2}+2 x +3}\, \sqrt {5}+5 x +1}{\sqrt {14}}\right )}{1250} \] Input:

int((-7*x^2+4*x+1)*(x^2+5*x+2)/(5*x^2+2*x+3)^(1/2),x)
 

Output:

( - 2625*sqrt(5*x**2 + 2*x + 3)*x**3 - 14275*sqrt(5*x**2 + 2*x + 3)*x**2 + 
 14750*sqrt(5*x**2 + 2*x + 3)*x + 27780*sqrt(5*x**2 + 2*x + 3) - 11406*sqr 
t(5)*log((sqrt(5*x**2 + 2*x + 3)*sqrt(5) + 5*x + 1)/sqrt(14)))/7500