\(\int \frac {1}{(2-5 x^2-3 x^4)^{3/2}} \, dx\) [183]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 16, antiderivative size = 75 \[ \int \frac {1}{\left (2-5 x^2-3 x^4\right )^{3/2}} \, dx=\frac {x \left (37+15 x^2\right )}{98 \sqrt {2-5 x^2-3 x^4}}-\frac {5}{49} \sqrt {\frac {3}{2}} E\left (\arcsin \left (\sqrt {3} x\right )|-\frac {1}{6}\right )+\frac {1}{7} \sqrt {\frac {3}{2}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {3} x\right ),-\frac {1}{6}\right ) \] Output:

1/98*x*(15*x^2+37)/(-3*x^4-5*x^2+2)^(1/2)-5/98*6^(1/2)*EllipticE(x*3^(1/2) 
,1/6*I*6^(1/2))+1/14*EllipticF(x*3^(1/2),1/6*I*6^(1/2))*6^(1/2)
 

Mathematica [A] (verified)

Time = 9.08 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.29 \[ \int \frac {1}{\left (2-5 x^2-3 x^4\right )^{3/2}} \, dx=\frac {37 x+15 x^3-5 \sqrt {6-18 x^2} \sqrt {2+x^2} E\left (\arcsin \left (\sqrt {3} x\right )|-\frac {1}{6}\right )+7 \sqrt {6-18 x^2} \sqrt {2+x^2} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {3} x\right ),-\frac {1}{6}\right )}{98 \sqrt {2-5 x^2-3 x^4}} \] Input:

Integrate[(2 - 5*x^2 - 3*x^4)^(-3/2),x]
 

Output:

(37*x + 15*x^3 - 5*Sqrt[6 - 18*x^2]*Sqrt[2 + x^2]*EllipticE[ArcSin[Sqrt[3] 
*x], -1/6] + 7*Sqrt[6 - 18*x^2]*Sqrt[2 + x^2]*EllipticF[ArcSin[Sqrt[3]*x], 
 -1/6])/(98*Sqrt[2 - 5*x^2 - 3*x^4])
 

Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 76, normalized size of antiderivative = 1.01, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.438, Rules used = {1405, 27, 1494, 27, 399, 321, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (-3 x^4-5 x^2+2\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1405

\(\displaystyle \frac {x \left (15 x^2+37\right )}{98 \sqrt {-3 x^4-5 x^2+2}}-\frac {1}{98} \int -\frac {3 \left (4-5 x^2\right )}{\sqrt {-3 x^4-5 x^2+2}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3}{98} \int \frac {4-5 x^2}{\sqrt {-3 x^4-5 x^2+2}}dx+\frac {x \left (15 x^2+37\right )}{98 \sqrt {-3 x^4-5 x^2+2}}\)

\(\Big \downarrow \) 1494

\(\displaystyle \frac {3}{49} \sqrt {3} \int \frac {4-5 x^2}{2 \sqrt {3} \sqrt {1-3 x^2} \sqrt {x^2+2}}dx+\frac {x \left (15 x^2+37\right )}{98 \sqrt {-3 x^4-5 x^2+2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3}{98} \int \frac {4-5 x^2}{\sqrt {1-3 x^2} \sqrt {x^2+2}}dx+\frac {x \left (15 x^2+37\right )}{98 \sqrt {-3 x^4-5 x^2+2}}\)

\(\Big \downarrow \) 399

\(\displaystyle \frac {3}{98} \left (14 \int \frac {1}{\sqrt {1-3 x^2} \sqrt {x^2+2}}dx-5 \int \frac {\sqrt {x^2+2}}{\sqrt {1-3 x^2}}dx\right )+\frac {x \left (15 x^2+37\right )}{98 \sqrt {-3 x^4-5 x^2+2}}\)

\(\Big \downarrow \) 321

\(\displaystyle \frac {3}{98} \left (7 \sqrt {\frac {2}{3}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {3} x\right ),-\frac {1}{6}\right )-5 \int \frac {\sqrt {x^2+2}}{\sqrt {1-3 x^2}}dx\right )+\frac {x \left (15 x^2+37\right )}{98 \sqrt {-3 x^4-5 x^2+2}}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {3}{98} \left (7 \sqrt {\frac {2}{3}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {3} x\right ),-\frac {1}{6}\right )-5 \sqrt {\frac {2}{3}} E\left (\arcsin \left (\sqrt {3} x\right )|-\frac {1}{6}\right )\right )+\frac {x \left (15 x^2+37\right )}{98 \sqrt {-3 x^4-5 x^2+2}}\)

Input:

Int[(2 - 5*x^2 - 3*x^4)^(-3/2),x]
 

Output:

(x*(37 + 15*x^2))/(98*Sqrt[2 - 5*x^2 - 3*x^4]) + (3*(-5*Sqrt[2/3]*Elliptic 
E[ArcSin[Sqrt[3]*x], -1/6] + 7*Sqrt[2/3]*EllipticF[ArcSin[Sqrt[3]*x], -1/6 
]))/98
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 399
Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_) 
^2]), x_Symbol] :> Simp[f/b   Int[Sqrt[a + b*x^2]/Sqrt[c + d*x^2], x], x] + 
 Simp[(b*e - a*f)/b   Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; Fr 
eeQ[{a, b, c, d, e, f}, x] &&  !((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && 
(PosQ[d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c])))))
 

rule 1405
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-x)*(b^2 
- 2*a*c + b*c*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c)) 
), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c))   Int[(b^2 - 2*a*c + 2*(p + 1)*( 
b^2 - 4*a*c) + b*c*(4*p + 7)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; Fr 
eeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && IntegerQ[2*p]
 

rule 1494
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[2*Sqrt[-c]   Int[(d + e*x^2)/(Sqr 
t[b + q + 2*c*x^2]*Sqrt[-b + q - 2*c*x^2]), x], x]] /; FreeQ[{a, b, c, d, e 
}, x] && GtQ[b^2 - 4*a*c, 0] && LtQ[c, 0]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 138 vs. \(2 (59 ) = 118\).

Time = 2.75 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.85

method result size
risch \(\frac {x \left (15 x^{2}+37\right )}{98 \sqrt {-3 x^{4}-5 x^{2}+2}}+\frac {\sqrt {3}\, \sqrt {-3 x^{2}+1}\, \sqrt {2 x^{2}+4}\, \operatorname {EllipticF}\left (\sqrt {3}\, x , \frac {i \sqrt {6}}{6}\right )}{49 \sqrt {-3 x^{4}-5 x^{2}+2}}+\frac {5 \sqrt {3}\, \sqrt {-3 x^{2}+1}\, \sqrt {2 x^{2}+4}\, \left (\operatorname {EllipticF}\left (\sqrt {3}\, x , \frac {i \sqrt {6}}{6}\right )-\operatorname {EllipticE}\left (\sqrt {3}\, x , \frac {i \sqrt {6}}{6}\right )\right )}{98 \sqrt {-3 x^{4}-5 x^{2}+2}}\) \(139\)
default \(\frac {\frac {37}{98} x +\frac {15}{98} x^{3}}{\sqrt {-3 x^{4}-5 x^{2}+2}}+\frac {\sqrt {3}\, \sqrt {-3 x^{2}+1}\, \sqrt {2 x^{2}+4}\, \operatorname {EllipticF}\left (\sqrt {3}\, x , \frac {i \sqrt {6}}{6}\right )}{49 \sqrt {-3 x^{4}-5 x^{2}+2}}+\frac {5 \sqrt {3}\, \sqrt {-3 x^{2}+1}\, \sqrt {2 x^{2}+4}\, \left (\operatorname {EllipticF}\left (\sqrt {3}\, x , \frac {i \sqrt {6}}{6}\right )-\operatorname {EllipticE}\left (\sqrt {3}\, x , \frac {i \sqrt {6}}{6}\right )\right )}{98 \sqrt {-3 x^{4}-5 x^{2}+2}}\) \(140\)
elliptic \(\frac {\frac {37}{98} x +\frac {15}{98} x^{3}}{\sqrt {-3 x^{4}-5 x^{2}+2}}+\frac {\sqrt {3}\, \sqrt {-3 x^{2}+1}\, \sqrt {2 x^{2}+4}\, \operatorname {EllipticF}\left (\sqrt {3}\, x , \frac {i \sqrt {6}}{6}\right )}{49 \sqrt {-3 x^{4}-5 x^{2}+2}}+\frac {5 \sqrt {3}\, \sqrt {-3 x^{2}+1}\, \sqrt {2 x^{2}+4}\, \left (\operatorname {EllipticF}\left (\sqrt {3}\, x , \frac {i \sqrt {6}}{6}\right )-\operatorname {EllipticE}\left (\sqrt {3}\, x , \frac {i \sqrt {6}}{6}\right )\right )}{98 \sqrt {-3 x^{4}-5 x^{2}+2}}\) \(140\)

Input:

int(1/(-3*x^4-5*x^2+2)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/98*x*(15*x^2+37)/(-3*x^4-5*x^2+2)^(1/2)+1/49*3^(1/2)*(-3*x^2+1)^(1/2)*(2 
*x^2+4)^(1/2)/(-3*x^4-5*x^2+2)^(1/2)*EllipticF(3^(1/2)*x,1/6*I*6^(1/2))+5/ 
98*3^(1/2)*(-3*x^2+1)^(1/2)*(2*x^2+4)^(1/2)/(-3*x^4-5*x^2+2)^(1/2)*(Ellipt 
icF(3^(1/2)*x,1/6*I*6^(1/2))-EllipticE(3^(1/2)*x,1/6*I*6^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.29 \[ \int \frac {1}{\left (2-5 x^2-3 x^4\right )^{3/2}} \, dx=-\frac {15 \, \sqrt {3} \sqrt {2} {\left (3 \, x^{4} + 5 \, x^{2} - 2\right )} E(\arcsin \left (\sqrt {3} x\right )\,|\,-\frac {1}{6}) - 17 \, \sqrt {3} \sqrt {2} {\left (3 \, x^{4} + 5 \, x^{2} - 2\right )} F(\arcsin \left (\sqrt {3} x\right )\,|\,-\frac {1}{6}) + \sqrt {-3 \, x^{4} - 5 \, x^{2} + 2} {\left (15 \, x^{3} + 37 \, x\right )}}{98 \, {\left (3 \, x^{4} + 5 \, x^{2} - 2\right )}} \] Input:

integrate(1/(-3*x^4-5*x^2+2)^(3/2),x, algorithm="fricas")
 

Output:

-1/98*(15*sqrt(3)*sqrt(2)*(3*x^4 + 5*x^2 - 2)*elliptic_e(arcsin(sqrt(3)*x) 
, -1/6) - 17*sqrt(3)*sqrt(2)*(3*x^4 + 5*x^2 - 2)*elliptic_f(arcsin(sqrt(3) 
*x), -1/6) + sqrt(-3*x^4 - 5*x^2 + 2)*(15*x^3 + 37*x))/(3*x^4 + 5*x^2 - 2)
 

Sympy [F]

\[ \int \frac {1}{\left (2-5 x^2-3 x^4\right )^{3/2}} \, dx=\int \frac {1}{\left (- 3 x^{4} - 5 x^{2} + 2\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(1/(-3*x**4-5*x**2+2)**(3/2),x)
 

Output:

Integral((-3*x**4 - 5*x**2 + 2)**(-3/2), x)
 

Maxima [F]

\[ \int \frac {1}{\left (2-5 x^2-3 x^4\right )^{3/2}} \, dx=\int { \frac {1}{{\left (-3 \, x^{4} - 5 \, x^{2} + 2\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(-3*x^4-5*x^2+2)^(3/2),x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

integrate((-3*x^4 - 5*x^2 + 2)^(-3/2), x)
 

Giac [F]

\[ \int \frac {1}{\left (2-5 x^2-3 x^4\right )^{3/2}} \, dx=\int { \frac {1}{{\left (-3 \, x^{4} - 5 \, x^{2} + 2\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(-3*x^4-5*x^2+2)^(3/2),x, algorithm="giac")
 

Output:

integrate((-3*x^4 - 5*x^2 + 2)^(-3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (2-5 x^2-3 x^4\right )^{3/2}} \, dx=\int \frac {1}{{\left (-3\,x^4-5\,x^2+2\right )}^{3/2}} \,d x \] Input:

int(1/(2 - 3*x^4 - 5*x^2)^(3/2),x)
 

Output:

int(1/(2 - 3*x^4 - 5*x^2)^(3/2), x)
 

Reduce [F]

\[ \int \frac {1}{\left (2-5 x^2-3 x^4\right )^{3/2}} \, dx=\int \frac {\sqrt {-3 x^{4}-5 x^{2}+2}}{9 x^{8}+30 x^{6}+13 x^{4}-20 x^{2}+4}d x \] Input:

int(1/(-3*x^4-5*x^2+2)^(3/2),x)
 

Output:

int(sqrt( - 3*x**4 - 5*x**2 + 2)/(9*x**8 + 30*x**6 + 13*x**4 - 20*x**2 + 4 
),x)