\(\int \frac {1}{(-2+2 x^2+3 x^4)^{3/2}} \, dx\) [207]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 16, antiderivative size = 235 \[ \int \frac {1}{\left (-2+2 x^2+3 x^4\right )^{3/2}} \, dx=-\frac {x \left (8+3 x^2\right )}{28 \sqrt {-2+2 x^2+3 x^4}}+\frac {\sqrt {\frac {1}{2} \left (1+\sqrt {7}\right )} \sqrt {2-\left (1-\sqrt {7}\right ) x^2} \sqrt {2-\left (1+\sqrt {7}\right ) x^2} E\left (\arcsin \left (\sqrt {\frac {1}{2} \left (1+\sqrt {7}\right )} x\right )|\frac {1}{3} \left (-4+\sqrt {7}\right )\right )}{28 \sqrt {-2+2 x^2+3 x^4}}-\frac {\sqrt {\frac {1}{14} \left (1+\sqrt {7}\right )} \sqrt {2-\left (1-\sqrt {7}\right ) x^2} \sqrt {2-\left (1+\sqrt {7}\right ) x^2} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {1}{2} \left (1+\sqrt {7}\right )} x\right ),\frac {1}{3} \left (-4+\sqrt {7}\right )\right )}{4 \sqrt {-2+2 x^2+3 x^4}} \] Output:

-1/28*x*(3*x^2+8)/(3*x^4+2*x^2-2)^(1/2)+1/56*(2+2*7^(1/2))^(1/2)*(2-(1-7^( 
1/2))*x^2)^(1/2)*(2-(1+7^(1/2))*x^2)^(1/2)*EllipticE(1/2*(2+2*7^(1/2))^(1/ 
2)*x,1/6*I*42^(1/2)-1/6*I*6^(1/2))/(3*x^4+2*x^2-2)^(1/2)-1/56*(14+14*7^(1/ 
2))^(1/2)*(2-(1-7^(1/2))*x^2)^(1/2)*(2-(1+7^(1/2))*x^2)^(1/2)*EllipticF(1/ 
2*(2+2*7^(1/2))^(1/2)*x,1/6*I*42^(1/2)-1/6*I*6^(1/2))/(3*x^4+2*x^2-2)^(1/2 
)
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 6.73 (sec) , antiderivative size = 172, normalized size of antiderivative = 0.73 \[ \int \frac {1}{\left (-2+2 x^2+3 x^4\right )^{3/2}} \, dx=\frac {-3 x \left (8+3 x^2\right )+3 i \sqrt {-1+\sqrt {7}} \sqrt {2-2 x^2-3 x^4} E\left (i \text {arcsinh}\left (\sqrt {\frac {3}{1+\sqrt {7}}} x\right )|-\frac {4}{3}-\frac {\sqrt {7}}{3}\right )-\frac {3 i \left (-7+\sqrt {7}\right ) \sqrt {2-2 x^2-3 x^4} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {3}{1+\sqrt {7}}} x\right ),-\frac {4}{3}-\frac {\sqrt {7}}{3}\right )}{\sqrt {-1+\sqrt {7}}}}{84 \sqrt {-2+2 x^2+3 x^4}} \] Input:

Integrate[(-2 + 2*x^2 + 3*x^4)^(-3/2),x]
 

Output:

(-3*x*(8 + 3*x^2) + (3*I)*Sqrt[-1 + Sqrt[7]]*Sqrt[2 - 2*x^2 - 3*x^4]*Ellip 
ticE[I*ArcSinh[Sqrt[3/(1 + Sqrt[7])]*x], -4/3 - Sqrt[7]/3] - ((3*I)*(-7 + 
Sqrt[7])*Sqrt[2 - 2*x^2 - 3*x^4]*EllipticF[I*ArcSinh[Sqrt[3/(1 + Sqrt[7])] 
*x], -4/3 - Sqrt[7]/3])/Sqrt[-1 + Sqrt[7]])/(84*Sqrt[-2 + 2*x^2 + 3*x^4])
 

Rubi [A] (verified)

Time = 0.78 (sec) , antiderivative size = 358, normalized size of antiderivative = 1.52, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {1405, 27, 1501, 27, 1411, 1498}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (3 x^4+2 x^2-2\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1405

\(\displaystyle \frac {1}{56} \int -\frac {6 \left (2-x^2\right )}{\sqrt {3 x^4+2 x^2-2}}dx-\frac {x \left (3 x^2+8\right )}{28 \sqrt {3 x^4+2 x^2-2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {3}{28} \int \frac {2-x^2}{\sqrt {3 x^4+2 x^2-2}}dx-\frac {x \left (3 x^2+8\right )}{28 \sqrt {3 x^4+2 x^2-2}}\)

\(\Big \downarrow \) 1501

\(\displaystyle -\frac {3}{28} \left (\frac {1}{3} \left (7-\sqrt {7}\right ) \int \frac {1}{\sqrt {3 x^4+2 x^2-2}}dx-\frac {1}{6} \int \frac {2 \left (3 x^2-\sqrt {7}+1\right )}{\sqrt {3 x^4+2 x^2-2}}dx\right )-\frac {x \left (3 x^2+8\right )}{28 \sqrt {3 x^4+2 x^2-2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {3}{28} \left (\frac {1}{3} \left (7-\sqrt {7}\right ) \int \frac {1}{\sqrt {3 x^4+2 x^2-2}}dx-\frac {1}{3} \int \frac {3 x^2-\sqrt {7}+1}{\sqrt {3 x^4+2 x^2-2}}dx\right )-\frac {x \left (3 x^2+8\right )}{28 \sqrt {3 x^4+2 x^2-2}}\)

\(\Big \downarrow \) 1411

\(\displaystyle -\frac {3}{28} \left (\frac {\left (7-\sqrt {7}\right ) \sqrt {\frac {2-\left (1-\sqrt {7}\right ) x^2}{2-\left (1+\sqrt {7}\right ) x^2}} \sqrt {\left (1+\sqrt {7}\right ) x^2-2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} \sqrt [4]{7} x}{\sqrt {\left (1+\sqrt {7}\right ) x^2-2}}\right ),\frac {1}{14} \left (7+\sqrt {7}\right )\right )}{6 \sqrt [4]{7} \sqrt {\frac {1}{2-\left (1+\sqrt {7}\right ) x^2}} \sqrt {3 x^4+2 x^2-2}}-\frac {1}{3} \int \frac {3 x^2-\sqrt {7}+1}{\sqrt {3 x^4+2 x^2-2}}dx\right )-\frac {x \left (3 x^2+8\right )}{28 \sqrt {3 x^4+2 x^2-2}}\)

\(\Big \downarrow \) 1498

\(\displaystyle -\frac {3}{28} \left (\frac {\left (7-\sqrt {7}\right ) \sqrt {\frac {2-\left (1-\sqrt {7}\right ) x^2}{2-\left (1+\sqrt {7}\right ) x^2}} \sqrt {\left (1+\sqrt {7}\right ) x^2-2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} \sqrt [4]{7} x}{\sqrt {\left (1+\sqrt {7}\right ) x^2-2}}\right ),\frac {1}{14} \left (7+\sqrt {7}\right )\right )}{6 \sqrt [4]{7} \sqrt {\frac {1}{2-\left (1+\sqrt {7}\right ) x^2}} \sqrt {3 x^4+2 x^2-2}}+\frac {1}{3} \left (\frac {\sqrt [4]{7} \sqrt {\frac {2-\left (1-\sqrt {7}\right ) x^2}{2-\left (1+\sqrt {7}\right ) x^2}} \sqrt {\left (1+\sqrt {7}\right ) x^2-2} E\left (\arcsin \left (\frac {\sqrt {2} \sqrt [4]{7} x}{\sqrt {\left (1+\sqrt {7}\right ) x^2-2}}\right )|\frac {1}{14} \left (7+\sqrt {7}\right )\right )}{\sqrt {\frac {1}{2-\left (1+\sqrt {7}\right ) x^2}} \sqrt {3 x^4+2 x^2-2}}-\frac {x \left (3 x^2+\sqrt {7}+1\right )}{\sqrt {3 x^4+2 x^2-2}}\right )\right )-\frac {x \left (3 x^2+8\right )}{28 \sqrt {3 x^4+2 x^2-2}}\)

Input:

Int[(-2 + 2*x^2 + 3*x^4)^(-3/2),x]
 

Output:

-1/28*(x*(8 + 3*x^2))/Sqrt[-2 + 2*x^2 + 3*x^4] - (3*((-((x*(1 + Sqrt[7] + 
3*x^2))/Sqrt[-2 + 2*x^2 + 3*x^4]) + (7^(1/4)*Sqrt[(2 - (1 - Sqrt[7])*x^2)/ 
(2 - (1 + Sqrt[7])*x^2)]*Sqrt[-2 + (1 + Sqrt[7])*x^2]*EllipticE[ArcSin[(Sq 
rt[2]*7^(1/4)*x)/Sqrt[-2 + (1 + Sqrt[7])*x^2]], (7 + Sqrt[7])/14])/(Sqrt[( 
2 - (1 + Sqrt[7])*x^2)^(-1)]*Sqrt[-2 + 2*x^2 + 3*x^4]))/3 + ((7 - Sqrt[7]) 
*Sqrt[(2 - (1 - Sqrt[7])*x^2)/(2 - (1 + Sqrt[7])*x^2)]*Sqrt[-2 + (1 + Sqrt 
[7])*x^2]*EllipticF[ArcSin[(Sqrt[2]*7^(1/4)*x)/Sqrt[-2 + (1 + Sqrt[7])*x^2 
]], (7 + Sqrt[7])/14])/(6*7^(1/4)*Sqrt[(2 - (1 + Sqrt[7])*x^2)^(-1)]*Sqrt[ 
-2 + 2*x^2 + 3*x^4])))/28
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1405
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-x)*(b^2 
- 2*a*c + b*c*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c)) 
), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c))   Int[(b^2 - 2*a*c + 2*(p + 1)*( 
b^2 - 4*a*c) + b*c*(4*p + 7)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; Fr 
eeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && IntegerQ[2*p]
 

rule 1411
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b 
^2 - 4*a*c, 2]}, Simp[Sqrt[(2*a + (b - q)*x^2)/(2*a + (b + q)*x^2)]*(Sqrt[( 
2*a + (b + q)*x^2)/q]/(2*Sqrt[a + b*x^2 + c*x^4]*Sqrt[a/(2*a + (b + q)*x^2) 
]))*EllipticF[ArcSin[x/Sqrt[(2*a + (b + q)*x^2)/(2*q)]], (b + q)/(2*q)], x] 
] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0] && LtQ[a, 0] && GtQ[c, 0]
 

rule 1498
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[e*x*((b + q + 2*c*x^2)/(2*c*Sqrt[ 
a + b*x^2 + c*x^4])), x] - Simp[e*q*Sqrt[(2*a + (b - q)*x^2)/(2*a + (b + q) 
*x^2)]*(Sqrt[(2*a + (b + q)*x^2)/q]/(2*c*Sqrt[a + b*x^2 + c*x^4]*Sqrt[a/(2* 
a + (b + q)*x^2)]))*EllipticE[ArcSin[x/Sqrt[(2*a + (b + q)*x^2)/(2*q)]], (b 
 + q)/(2*q)], x] /; EqQ[2*c*d - e*(b - q), 0]] /; FreeQ[{a, b, c, d, e}, x] 
 && GtQ[b^2 - 4*a*c, 0] && LtQ[a, 0] && GtQ[c, 0]
 

rule 1501
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(2*c*d - e*(b - q))/(2*c)   Int[1 
/Sqrt[a + b*x^2 + c*x^4], x], x] + Simp[e/(2*c)   Int[(b - q + 2*c*x^2)/Sqr 
t[a + b*x^2 + c*x^4], x], x] /; NeQ[2*c*d - e*(b - q), 0]] /; FreeQ[{a, b, 
c, d, e}, x] && GtQ[b^2 - 4*a*c, 0] && LtQ[a, 0] && GtQ[c, 0]
 
Maple [A] (verified)

Time = 1.78 (sec) , antiderivative size = 230, normalized size of antiderivative = 0.98

method result size
risch \(-\frac {x \left (3 x^{2}+8\right )}{28 \sqrt {3 x^{4}+2 x^{2}-2}}-\frac {3 \sqrt {1-\left (-\frac {\sqrt {7}}{2}+\frac {1}{2}\right ) x^{2}}\, \sqrt {1-\left (\frac {1}{2}+\frac {\sqrt {7}}{2}\right ) x^{2}}\, \operatorname {EllipticF}\left (\frac {\sqrt {2-2 \sqrt {7}}\, x}{2}, \frac {i \sqrt {6}}{6}+\frac {i \sqrt {42}}{6}\right )}{7 \sqrt {2-2 \sqrt {7}}\, \sqrt {3 x^{4}+2 x^{2}-2}}+\frac {6 \sqrt {1-\left (-\frac {\sqrt {7}}{2}+\frac {1}{2}\right ) x^{2}}\, \sqrt {1-\left (\frac {1}{2}+\frac {\sqrt {7}}{2}\right ) x^{2}}\, \left (\operatorname {EllipticF}\left (\frac {\sqrt {2-2 \sqrt {7}}\, x}{2}, \frac {i \sqrt {6}}{6}+\frac {i \sqrt {42}}{6}\right )-\operatorname {EllipticE}\left (\frac {\sqrt {2-2 \sqrt {7}}\, x}{2}, \frac {i \sqrt {6}}{6}+\frac {i \sqrt {42}}{6}\right )\right )}{7 \sqrt {2-2 \sqrt {7}}\, \sqrt {3 x^{4}+2 x^{2}-2}\, \left (2+2 \sqrt {7}\right )}\) \(230\)
default \(-\frac {6 \left (\frac {1}{21} x +\frac {1}{56} x^{3}\right )}{\sqrt {3 x^{4}+2 x^{2}-2}}-\frac {3 \sqrt {1-\left (-\frac {\sqrt {7}}{2}+\frac {1}{2}\right ) x^{2}}\, \sqrt {1-\left (\frac {1}{2}+\frac {\sqrt {7}}{2}\right ) x^{2}}\, \operatorname {EllipticF}\left (\frac {\sqrt {2-2 \sqrt {7}}\, x}{2}, \frac {i \sqrt {6}}{6}+\frac {i \sqrt {42}}{6}\right )}{7 \sqrt {2-2 \sqrt {7}}\, \sqrt {3 x^{4}+2 x^{2}-2}}+\frac {6 \sqrt {1-\left (-\frac {\sqrt {7}}{2}+\frac {1}{2}\right ) x^{2}}\, \sqrt {1-\left (\frac {1}{2}+\frac {\sqrt {7}}{2}\right ) x^{2}}\, \left (\operatorname {EllipticF}\left (\frac {\sqrt {2-2 \sqrt {7}}\, x}{2}, \frac {i \sqrt {6}}{6}+\frac {i \sqrt {42}}{6}\right )-\operatorname {EllipticE}\left (\frac {\sqrt {2-2 \sqrt {7}}\, x}{2}, \frac {i \sqrt {6}}{6}+\frac {i \sqrt {42}}{6}\right )\right )}{7 \sqrt {2-2 \sqrt {7}}\, \sqrt {3 x^{4}+2 x^{2}-2}\, \left (2+2 \sqrt {7}\right )}\) \(231\)
elliptic \(-\frac {6 \left (\frac {1}{21} x +\frac {1}{56} x^{3}\right )}{\sqrt {3 x^{4}+2 x^{2}-2}}-\frac {3 \sqrt {1-\left (-\frac {\sqrt {7}}{2}+\frac {1}{2}\right ) x^{2}}\, \sqrt {1-\left (\frac {1}{2}+\frac {\sqrt {7}}{2}\right ) x^{2}}\, \operatorname {EllipticF}\left (\frac {\sqrt {2-2 \sqrt {7}}\, x}{2}, \frac {i \sqrt {6}}{6}+\frac {i \sqrt {42}}{6}\right )}{7 \sqrt {2-2 \sqrt {7}}\, \sqrt {3 x^{4}+2 x^{2}-2}}+\frac {6 \sqrt {1-\left (-\frac {\sqrt {7}}{2}+\frac {1}{2}\right ) x^{2}}\, \sqrt {1-\left (\frac {1}{2}+\frac {\sqrt {7}}{2}\right ) x^{2}}\, \left (\operatorname {EllipticF}\left (\frac {\sqrt {2-2 \sqrt {7}}\, x}{2}, \frac {i \sqrt {6}}{6}+\frac {i \sqrt {42}}{6}\right )-\operatorname {EllipticE}\left (\frac {\sqrt {2-2 \sqrt {7}}\, x}{2}, \frac {i \sqrt {6}}{6}+\frac {i \sqrt {42}}{6}\right )\right )}{7 \sqrt {2-2 \sqrt {7}}\, \sqrt {3 x^{4}+2 x^{2}-2}\, \left (2+2 \sqrt {7}\right )}\) \(231\)

Input:

int(1/(3*x^4+2*x^2-2)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-1/28*x*(3*x^2+8)/(3*x^4+2*x^2-2)^(1/2)-3/7/(2-2*7^(1/2))^(1/2)*(1-(-1/2*7 
^(1/2)+1/2)*x^2)^(1/2)*(1-(1/2+1/2*7^(1/2))*x^2)^(1/2)/(3*x^4+2*x^2-2)^(1/ 
2)*EllipticF(1/2*(2-2*7^(1/2))^(1/2)*x,1/6*I*6^(1/2)+1/6*I*42^(1/2))+6/7/( 
2-2*7^(1/2))^(1/2)*(1-(-1/2*7^(1/2)+1/2)*x^2)^(1/2)*(1-(1/2+1/2*7^(1/2))*x 
^2)^(1/2)/(3*x^4+2*x^2-2)^(1/2)/(2+2*7^(1/2))*(EllipticF(1/2*(2-2*7^(1/2)) 
^(1/2)*x,1/6*I*6^(1/2)+1/6*I*42^(1/2))-EllipticE(1/2*(2-2*7^(1/2))^(1/2)*x 
,1/6*I*6^(1/2)+1/6*I*42^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 177, normalized size of antiderivative = 0.75 \[ \int \frac {1}{\left (-2+2 x^2+3 x^4\right )^{3/2}} \, dx=-\frac {{\left (\sqrt {7} \sqrt {-2} {\left (3 \, x^{4} + 2 \, x^{2} - 2\right )} + \sqrt {-2} {\left (3 \, x^{4} + 2 \, x^{2} - 2\right )}\right )} \sqrt {\frac {1}{2} \, \sqrt {7} + \frac {1}{2}} E(\arcsin \left (x \sqrt {\frac {1}{2} \, \sqrt {7} + \frac {1}{2}}\right )\,|\,\frac {1}{3} \, \sqrt {7} - \frac {4}{3}) - {\left (3 \, \sqrt {7} \sqrt {-2} {\left (3 \, x^{4} + 2 \, x^{2} - 2\right )} - \sqrt {-2} {\left (3 \, x^{4} + 2 \, x^{2} - 2\right )}\right )} \sqrt {\frac {1}{2} \, \sqrt {7} + \frac {1}{2}} F(\arcsin \left (x \sqrt {\frac {1}{2} \, \sqrt {7} + \frac {1}{2}}\right )\,|\,\frac {1}{3} \, \sqrt {7} - \frac {4}{3}) + 2 \, \sqrt {3 \, x^{4} + 2 \, x^{2} - 2} {\left (3 \, x^{3} + 8 \, x\right )}}{56 \, {\left (3 \, x^{4} + 2 \, x^{2} - 2\right )}} \] Input:

integrate(1/(3*x^4+2*x^2-2)^(3/2),x, algorithm="fricas")
 

Output:

-1/56*((sqrt(7)*sqrt(-2)*(3*x^4 + 2*x^2 - 2) + sqrt(-2)*(3*x^4 + 2*x^2 - 2 
))*sqrt(1/2*sqrt(7) + 1/2)*elliptic_e(arcsin(x*sqrt(1/2*sqrt(7) + 1/2)), 1 
/3*sqrt(7) - 4/3) - (3*sqrt(7)*sqrt(-2)*(3*x^4 + 2*x^2 - 2) - sqrt(-2)*(3* 
x^4 + 2*x^2 - 2))*sqrt(1/2*sqrt(7) + 1/2)*elliptic_f(arcsin(x*sqrt(1/2*sqr 
t(7) + 1/2)), 1/3*sqrt(7) - 4/3) + 2*sqrt(3*x^4 + 2*x^2 - 2)*(3*x^3 + 8*x) 
)/(3*x^4 + 2*x^2 - 2)
                                                                                    
                                                                                    
 

Sympy [F]

\[ \int \frac {1}{\left (-2+2 x^2+3 x^4\right )^{3/2}} \, dx=\int \frac {1}{\left (3 x^{4} + 2 x^{2} - 2\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(1/(3*x**4+2*x**2-2)**(3/2),x)
 

Output:

Integral((3*x**4 + 2*x**2 - 2)**(-3/2), x)
 

Maxima [F]

\[ \int \frac {1}{\left (-2+2 x^2+3 x^4\right )^{3/2}} \, dx=\int { \frac {1}{{\left (3 \, x^{4} + 2 \, x^{2} - 2\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(3*x^4+2*x^2-2)^(3/2),x, algorithm="maxima")
 

Output:

integrate((3*x^4 + 2*x^2 - 2)^(-3/2), x)
 

Giac [F]

\[ \int \frac {1}{\left (-2+2 x^2+3 x^4\right )^{3/2}} \, dx=\int { \frac {1}{{\left (3 \, x^{4} + 2 \, x^{2} - 2\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(3*x^4+2*x^2-2)^(3/2),x, algorithm="giac")
 

Output:

integrate((3*x^4 + 2*x^2 - 2)^(-3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (-2+2 x^2+3 x^4\right )^{3/2}} \, dx=\int \frac {1}{{\left (3\,x^4+2\,x^2-2\right )}^{3/2}} \,d x \] Input:

int(1/(2*x^2 + 3*x^4 - 2)^(3/2),x)
 

Output:

int(1/(2*x^2 + 3*x^4 - 2)^(3/2), x)
 

Reduce [F]

\[ \int \frac {1}{\left (-2+2 x^2+3 x^4\right )^{3/2}} \, dx=\int \frac {\sqrt {3 x^{4}+2 x^{2}-2}}{9 x^{8}+12 x^{6}-8 x^{4}-8 x^{2}+4}d x \] Input:

int(1/(3*x^4+2*x^2-2)^(3/2),x)
 

Output:

int(sqrt(3*x**4 + 2*x**2 - 2)/(9*x**8 + 12*x**6 - 8*x**4 - 8*x**2 + 4),x)