\(\int \frac {1}{(-2-6 x^2+3 x^4)^{3/2}} \, dx\) [215]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 16, antiderivative size = 225 \[ \int \frac {1}{\left (-2-6 x^2+3 x^4\right )^{3/2}} \, dx=-\frac {x \left (8-3 x^2\right )}{20 \sqrt {-2-6 x^2+3 x^4}}-\frac {\sqrt {\frac {3}{3+\sqrt {15}}} \sqrt {2+\left (3-\sqrt {15}\right ) x^2} \sqrt {2+\left (3+\sqrt {15}\right ) x^2} E\left (\arcsin \left (\sqrt {\frac {1}{2} \left (-3+\sqrt {15}\right )} x\right )|-4-\sqrt {15}\right )}{20 \sqrt {-2-6 x^2+3 x^4}}-\frac {\sqrt {2+\left (3-\sqrt {15}\right ) x^2} \sqrt {2+\left (3+\sqrt {15}\right ) x^2} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {1}{2} \left (-3+\sqrt {15}\right )} x\right ),-4-\sqrt {15}\right )}{4 \sqrt {5 \left (3+\sqrt {15}\right )} \sqrt {-2-6 x^2+3 x^4}} \] Output:

-1/20*x*(-3*x^2+8)/(3*x^4-6*x^2-2)^(1/2)-1/20*3^(1/2)/(3+15^(1/2))^(1/2)*( 
2+(3-15^(1/2))*x^2)^(1/2)*(2+(3+15^(1/2))*x^2)^(1/2)*EllipticE(1/2*(-6+2*1 
5^(1/2))^(1/2)*x,1/2*I*6^(1/2)+1/2*I*10^(1/2))/(3*x^4-6*x^2-2)^(1/2)-1/4*( 
2+(3-15^(1/2))*x^2)^(1/2)*(2+(3+15^(1/2))*x^2)^(1/2)*EllipticF(1/2*(-6+2*1 
5^(1/2))^(1/2)*x,1/2*I*6^(1/2)+1/2*I*10^(1/2))/(15+5*15^(1/2))^(1/2)/(3*x^ 
4-6*x^2-2)^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 7.12 (sec) , antiderivative size = 160, normalized size of antiderivative = 0.71 \[ \int \frac {1}{\left (-2-6 x^2+3 x^4\right )^{3/2}} \, dx=\frac {3 x \left (-8+3 x^2\right )-3 i \sqrt {3+\sqrt {15}} \sqrt {2+6 x^2-3 x^4} E\left (i \text {arcsinh}\left (\sqrt {\frac {3}{-3+\sqrt {15}}} x\right )|-4+\sqrt {15}\right )+\frac {3 i \left (5+\sqrt {15}\right ) \sqrt {2+6 x^2-3 x^4} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {3}{-3+\sqrt {15}}} x\right ),-4+\sqrt {15}\right )}{\sqrt {3+\sqrt {15}}}}{60 \sqrt {-2-6 x^2+3 x^4}} \] Input:

Integrate[(-2 - 6*x^2 + 3*x^4)^(-3/2),x]
 

Output:

(3*x*(-8 + 3*x^2) - (3*I)*Sqrt[3 + Sqrt[15]]*Sqrt[2 + 6*x^2 - 3*x^4]*Ellip 
ticE[I*ArcSinh[Sqrt[3/(-3 + Sqrt[15])]*x], -4 + Sqrt[15]] + ((3*I)*(5 + Sq 
rt[15])*Sqrt[2 + 6*x^2 - 3*x^4]*EllipticF[I*ArcSinh[Sqrt[3/(-3 + Sqrt[15]) 
]*x], -4 + Sqrt[15]])/Sqrt[3 + Sqrt[15]])/(60*Sqrt[-2 - 6*x^2 + 3*x^4])
 

Rubi [A] (verified)

Time = 0.84 (sec) , antiderivative size = 366, normalized size of antiderivative = 1.63, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {1405, 27, 1501, 27, 1411, 1498}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (3 x^4-6 x^2-2\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1405

\(\displaystyle \frac {1}{120} \int -\frac {6 \left (3 x^2+2\right )}{\sqrt {3 x^4-6 x^2-2}}dx-\frac {x \left (8-3 x^2\right )}{20 \sqrt {3 x^4-6 x^2-2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {1}{20} \int \frac {3 x^2+2}{\sqrt {3 x^4-6 x^2-2}}dx-\frac {x \left (8-3 x^2\right )}{20 \sqrt {3 x^4-6 x^2-2}}\)

\(\Big \downarrow \) 1501

\(\displaystyle \frac {1}{20} \left (-\left (\left (5+\sqrt {15}\right ) \int \frac {1}{\sqrt {3 x^4-6 x^2-2}}dx\right )-\frac {1}{2} \int -\frac {2 \left (-3 x^2+\sqrt {15}+3\right )}{\sqrt {3 x^4-6 x^2-2}}dx\right )-\frac {x \left (8-3 x^2\right )}{20 \sqrt {3 x^4-6 x^2-2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{20} \left (\int \frac {-3 x^2+\sqrt {15}+3}{\sqrt {3 x^4-6 x^2-2}}dx-\left (5+\sqrt {15}\right ) \int \frac {1}{\sqrt {3 x^4-6 x^2-2}}dx\right )-\frac {x \left (8-3 x^2\right )}{20 \sqrt {3 x^4-6 x^2-2}}\)

\(\Big \downarrow \) 1411

\(\displaystyle \frac {1}{20} \left (\int \frac {-3 x^2+\sqrt {15}+3}{\sqrt {3 x^4-6 x^2-2}}dx-\frac {\left (5+\sqrt {15}\right ) \sqrt {-\left (\left (3-\sqrt {15}\right ) x^2\right )-2} \sqrt {\frac {\left (3+\sqrt {15}\right ) x^2+2}{\left (3-\sqrt {15}\right ) x^2+2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} \sqrt [4]{15} x}{\sqrt {-\left (\left (3-\sqrt {15}\right ) x^2\right )-2}}\right ),\frac {1}{10} \left (5-\sqrt {15}\right )\right )}{2 \sqrt [4]{15} \sqrt {\frac {1}{\left (3-\sqrt {15}\right ) x^2+2}} \sqrt {3 x^4-6 x^2-2}}\right )-\frac {x \left (8-3 x^2\right )}{20 \sqrt {3 x^4-6 x^2-2}}\)

\(\Big \downarrow \) 1498

\(\displaystyle \frac {1}{20} \left (-\frac {\left (5+\sqrt {15}\right ) \sqrt {-\left (\left (3-\sqrt {15}\right ) x^2\right )-2} \sqrt {\frac {\left (3+\sqrt {15}\right ) x^2+2}{\left (3-\sqrt {15}\right ) x^2+2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {2} \sqrt [4]{15} x}{\sqrt {-\left (\left (3-\sqrt {15}\right ) x^2\right )-2}}\right ),\frac {1}{10} \left (5-\sqrt {15}\right )\right )}{2 \sqrt [4]{15} \sqrt {\frac {1}{\left (3-\sqrt {15}\right ) x^2+2}} \sqrt {3 x^4-6 x^2-2}}+\frac {\sqrt [4]{15} \sqrt {-\left (\left (3-\sqrt {15}\right ) x^2\right )-2} \sqrt {\frac {\left (3+\sqrt {15}\right ) x^2+2}{\left (3-\sqrt {15}\right ) x^2+2}} E\left (\arcsin \left (\frac {\sqrt {2} \sqrt [4]{15} x}{\sqrt {-\left (\left (3-\sqrt {15}\right ) x^2\right )-2}}\right )|\frac {1}{10} \left (5-\sqrt {15}\right )\right )}{\sqrt {\frac {1}{\left (3-\sqrt {15}\right ) x^2+2}} \sqrt {3 x^4-6 x^2-2}}+\frac {x \left (-3 x^2-\sqrt {15}+3\right )}{\sqrt {3 x^4-6 x^2-2}}\right )-\frac {x \left (8-3 x^2\right )}{20 \sqrt {3 x^4-6 x^2-2}}\)

Input:

Int[(-2 - 6*x^2 + 3*x^4)^(-3/2),x]
 

Output:

-1/20*(x*(8 - 3*x^2))/Sqrt[-2 - 6*x^2 + 3*x^4] + ((x*(3 - Sqrt[15] - 3*x^2 
))/Sqrt[-2 - 6*x^2 + 3*x^4] + (15^(1/4)*Sqrt[-2 - (3 - Sqrt[15])*x^2]*Sqrt 
[(2 + (3 + Sqrt[15])*x^2)/(2 + (3 - Sqrt[15])*x^2)]*EllipticE[ArcSin[(Sqrt 
[2]*15^(1/4)*x)/Sqrt[-2 - (3 - Sqrt[15])*x^2]], (5 - Sqrt[15])/10])/(Sqrt[ 
(2 + (3 - Sqrt[15])*x^2)^(-1)]*Sqrt[-2 - 6*x^2 + 3*x^4]) - ((5 + Sqrt[15]) 
*Sqrt[-2 - (3 - Sqrt[15])*x^2]*Sqrt[(2 + (3 + Sqrt[15])*x^2)/(2 + (3 - Sqr 
t[15])*x^2)]*EllipticF[ArcSin[(Sqrt[2]*15^(1/4)*x)/Sqrt[-2 - (3 - Sqrt[15] 
)*x^2]], (5 - Sqrt[15])/10])/(2*15^(1/4)*Sqrt[(2 + (3 - Sqrt[15])*x^2)^(-1 
)]*Sqrt[-2 - 6*x^2 + 3*x^4]))/20
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1405
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-x)*(b^2 
- 2*a*c + b*c*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c)) 
), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c))   Int[(b^2 - 2*a*c + 2*(p + 1)*( 
b^2 - 4*a*c) + b*c*(4*p + 7)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; Fr 
eeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && IntegerQ[2*p]
 

rule 1411
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b 
^2 - 4*a*c, 2]}, Simp[Sqrt[(2*a + (b - q)*x^2)/(2*a + (b + q)*x^2)]*(Sqrt[( 
2*a + (b + q)*x^2)/q]/(2*Sqrt[a + b*x^2 + c*x^4]*Sqrt[a/(2*a + (b + q)*x^2) 
]))*EllipticF[ArcSin[x/Sqrt[(2*a + (b + q)*x^2)/(2*q)]], (b + q)/(2*q)], x] 
] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0] && LtQ[a, 0] && GtQ[c, 0]
 

rule 1498
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[e*x*((b + q + 2*c*x^2)/(2*c*Sqrt[ 
a + b*x^2 + c*x^4])), x] - Simp[e*q*Sqrt[(2*a + (b - q)*x^2)/(2*a + (b + q) 
*x^2)]*(Sqrt[(2*a + (b + q)*x^2)/q]/(2*c*Sqrt[a + b*x^2 + c*x^4]*Sqrt[a/(2* 
a + (b + q)*x^2)]))*EllipticE[ArcSin[x/Sqrt[(2*a + (b + q)*x^2)/(2*q)]], (b 
 + q)/(2*q)], x] /; EqQ[2*c*d - e*(b - q), 0]] /; FreeQ[{a, b, c, d, e}, x] 
 && GtQ[b^2 - 4*a*c, 0] && LtQ[a, 0] && GtQ[c, 0]
 

rule 1501
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(2*c*d - e*(b - q))/(2*c)   Int[1 
/Sqrt[a + b*x^2 + c*x^4], x], x] + Simp[e/(2*c)   Int[(b - q + 2*c*x^2)/Sqr 
t[a + b*x^2 + c*x^4], x], x] /; NeQ[2*c*d - e*(b - q), 0]] /; FreeQ[{a, b, 
c, d, e}, x] && GtQ[b^2 - 4*a*c, 0] && LtQ[a, 0] && GtQ[c, 0]
 
Maple [A] (verified)

Time = 2.75 (sec) , antiderivative size = 230, normalized size of antiderivative = 1.02

method result size
risch \(\frac {x \left (3 x^{2}-8\right )}{20 \sqrt {3 x^{4}-6 x^{2}-2}}-\frac {\sqrt {1-\left (-\frac {3}{2}-\frac {\sqrt {15}}{2}\right ) x^{2}}\, \sqrt {1-\left (-\frac {3}{2}+\frac {\sqrt {15}}{2}\right ) x^{2}}\, \operatorname {EllipticF}\left (\frac {x \sqrt {-6-2 \sqrt {15}}}{2}, \frac {i \sqrt {10}}{2}-\frac {i \sqrt {6}}{2}\right )}{5 \sqrt {-6-2 \sqrt {15}}\, \sqrt {3 x^{4}-6 x^{2}-2}}-\frac {6 \sqrt {1-\left (-\frac {3}{2}-\frac {\sqrt {15}}{2}\right ) x^{2}}\, \sqrt {1-\left (-\frac {3}{2}+\frac {\sqrt {15}}{2}\right ) x^{2}}\, \left (\operatorname {EllipticF}\left (\frac {x \sqrt {-6-2 \sqrt {15}}}{2}, \frac {i \sqrt {10}}{2}-\frac {i \sqrt {6}}{2}\right )-\operatorname {EllipticE}\left (\frac {x \sqrt {-6-2 \sqrt {15}}}{2}, \frac {i \sqrt {10}}{2}-\frac {i \sqrt {6}}{2}\right )\right )}{5 \sqrt {-6-2 \sqrt {15}}\, \sqrt {3 x^{4}-6 x^{2}-2}\, \left (-6+2 \sqrt {15}\right )}\) \(230\)
default \(-\frac {6 \left (\frac {1}{15} x -\frac {1}{40} x^{3}\right )}{\sqrt {3 x^{4}-6 x^{2}-2}}-\frac {\sqrt {1-\left (-\frac {3}{2}-\frac {\sqrt {15}}{2}\right ) x^{2}}\, \sqrt {1-\left (-\frac {3}{2}+\frac {\sqrt {15}}{2}\right ) x^{2}}\, \operatorname {EllipticF}\left (\frac {x \sqrt {-6-2 \sqrt {15}}}{2}, \frac {i \sqrt {10}}{2}-\frac {i \sqrt {6}}{2}\right )}{5 \sqrt {-6-2 \sqrt {15}}\, \sqrt {3 x^{4}-6 x^{2}-2}}-\frac {6 \sqrt {1-\left (-\frac {3}{2}-\frac {\sqrt {15}}{2}\right ) x^{2}}\, \sqrt {1-\left (-\frac {3}{2}+\frac {\sqrt {15}}{2}\right ) x^{2}}\, \left (\operatorname {EllipticF}\left (\frac {x \sqrt {-6-2 \sqrt {15}}}{2}, \frac {i \sqrt {10}}{2}-\frac {i \sqrt {6}}{2}\right )-\operatorname {EllipticE}\left (\frac {x \sqrt {-6-2 \sqrt {15}}}{2}, \frac {i \sqrt {10}}{2}-\frac {i \sqrt {6}}{2}\right )\right )}{5 \sqrt {-6-2 \sqrt {15}}\, \sqrt {3 x^{4}-6 x^{2}-2}\, \left (-6+2 \sqrt {15}\right )}\) \(231\)
elliptic \(-\frac {6 \left (\frac {1}{15} x -\frac {1}{40} x^{3}\right )}{\sqrt {3 x^{4}-6 x^{2}-2}}-\frac {\sqrt {1-\left (-\frac {3}{2}-\frac {\sqrt {15}}{2}\right ) x^{2}}\, \sqrt {1-\left (-\frac {3}{2}+\frac {\sqrt {15}}{2}\right ) x^{2}}\, \operatorname {EllipticF}\left (\frac {x \sqrt {-6-2 \sqrt {15}}}{2}, \frac {i \sqrt {10}}{2}-\frac {i \sqrt {6}}{2}\right )}{5 \sqrt {-6-2 \sqrt {15}}\, \sqrt {3 x^{4}-6 x^{2}-2}}-\frac {6 \sqrt {1-\left (-\frac {3}{2}-\frac {\sqrt {15}}{2}\right ) x^{2}}\, \sqrt {1-\left (-\frac {3}{2}+\frac {\sqrt {15}}{2}\right ) x^{2}}\, \left (\operatorname {EllipticF}\left (\frac {x \sqrt {-6-2 \sqrt {15}}}{2}, \frac {i \sqrt {10}}{2}-\frac {i \sqrt {6}}{2}\right )-\operatorname {EllipticE}\left (\frac {x \sqrt {-6-2 \sqrt {15}}}{2}, \frac {i \sqrt {10}}{2}-\frac {i \sqrt {6}}{2}\right )\right )}{5 \sqrt {-6-2 \sqrt {15}}\, \sqrt {3 x^{4}-6 x^{2}-2}\, \left (-6+2 \sqrt {15}\right )}\) \(231\)

Input:

int(1/(3*x^4-6*x^2-2)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/20*x*(3*x^2-8)/(3*x^4-6*x^2-2)^(1/2)-1/5/(-6-2*15^(1/2))^(1/2)*(1-(-3/2- 
1/2*15^(1/2))*x^2)^(1/2)*(1-(-3/2+1/2*15^(1/2))*x^2)^(1/2)/(3*x^4-6*x^2-2) 
^(1/2)*EllipticF(1/2*x*(-6-2*15^(1/2))^(1/2),1/2*I*10^(1/2)-1/2*I*6^(1/2)) 
-6/5/(-6-2*15^(1/2))^(1/2)*(1-(-3/2-1/2*15^(1/2))*x^2)^(1/2)*(1-(-3/2+1/2* 
15^(1/2))*x^2)^(1/2)/(3*x^4-6*x^2-2)^(1/2)/(-6+2*15^(1/2))*(EllipticF(1/2* 
x*(-6-2*15^(1/2))^(1/2),1/2*I*10^(1/2)-1/2*I*6^(1/2))-EllipticE(1/2*x*(-6- 
2*15^(1/2))^(1/2),1/2*I*10^(1/2)-1/2*I*6^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 178, normalized size of antiderivative = 0.79 \[ \int \frac {1}{\left (-2-6 x^2+3 x^4\right )^{3/2}} \, dx=\frac {3 \, {\left (\sqrt {15} \sqrt {-2} {\left (3 \, x^{4} - 6 \, x^{2} - 2\right )} - 3 \, \sqrt {-2} {\left (3 \, x^{4} - 6 \, x^{2} - 2\right )}\right )} \sqrt {\frac {1}{2} \, \sqrt {15} - \frac {3}{2}} E(\arcsin \left (x \sqrt {\frac {1}{2} \, \sqrt {15} - \frac {3}{2}}\right )\,|\,-\sqrt {15} - 4) - {\left (\sqrt {15} \sqrt {-2} {\left (3 \, x^{4} - 6 \, x^{2} - 2\right )} - 15 \, \sqrt {-2} {\left (3 \, x^{4} - 6 \, x^{2} - 2\right )}\right )} \sqrt {\frac {1}{2} \, \sqrt {15} - \frac {3}{2}} F(\arcsin \left (x \sqrt {\frac {1}{2} \, \sqrt {15} - \frac {3}{2}}\right )\,|\,-\sqrt {15} - 4) + 6 \, \sqrt {3 \, x^{4} - 6 \, x^{2} - 2} {\left (3 \, x^{3} - 8 \, x\right )}}{120 \, {\left (3 \, x^{4} - 6 \, x^{2} - 2\right )}} \] Input:

integrate(1/(3*x^4-6*x^2-2)^(3/2),x, algorithm="fricas")
 

Output:

1/120*(3*(sqrt(15)*sqrt(-2)*(3*x^4 - 6*x^2 - 2) - 3*sqrt(-2)*(3*x^4 - 6*x^ 
2 - 2))*sqrt(1/2*sqrt(15) - 3/2)*elliptic_e(arcsin(x*sqrt(1/2*sqrt(15) - 3 
/2)), -sqrt(15) - 4) - (sqrt(15)*sqrt(-2)*(3*x^4 - 6*x^2 - 2) - 15*sqrt(-2 
)*(3*x^4 - 6*x^2 - 2))*sqrt(1/2*sqrt(15) - 3/2)*elliptic_f(arcsin(x*sqrt(1 
/2*sqrt(15) - 3/2)), -sqrt(15) - 4) + 6*sqrt(3*x^4 - 6*x^2 - 2)*(3*x^3 - 8 
*x))/(3*x^4 - 6*x^2 - 2)
                                                                                    
                                                                                    
 

Sympy [F]

\[ \int \frac {1}{\left (-2-6 x^2+3 x^4\right )^{3/2}} \, dx=\int \frac {1}{\left (3 x^{4} - 6 x^{2} - 2\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(1/(3*x**4-6*x**2-2)**(3/2),x)
 

Output:

Integral((3*x**4 - 6*x**2 - 2)**(-3/2), x)
 

Maxima [F]

\[ \int \frac {1}{\left (-2-6 x^2+3 x^4\right )^{3/2}} \, dx=\int { \frac {1}{{\left (3 \, x^{4} - 6 \, x^{2} - 2\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(3*x^4-6*x^2-2)^(3/2),x, algorithm="maxima")
 

Output:

integrate((3*x^4 - 6*x^2 - 2)^(-3/2), x)
 

Giac [F]

\[ \int \frac {1}{\left (-2-6 x^2+3 x^4\right )^{3/2}} \, dx=\int { \frac {1}{{\left (3 \, x^{4} - 6 \, x^{2} - 2\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(3*x^4-6*x^2-2)^(3/2),x, algorithm="giac")
 

Output:

integrate((3*x^4 - 6*x^2 - 2)^(-3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (-2-6 x^2+3 x^4\right )^{3/2}} \, dx=\int \frac {1}{{\left (3\,x^4-6\,x^2-2\right )}^{3/2}} \,d x \] Input:

int(1/(3*x^4 - 6*x^2 - 2)^(3/2),x)
 

Output:

int(1/(3*x^4 - 6*x^2 - 2)^(3/2), x)
 

Reduce [F]

\[ \int \frac {1}{\left (-2-6 x^2+3 x^4\right )^{3/2}} \, dx=\int \frac {\sqrt {3 x^{4}-6 x^{2}-2}}{9 x^{8}-36 x^{6}+24 x^{4}+24 x^{2}+4}d x \] Input:

int(1/(3*x^4-6*x^2-2)^(3/2),x)
 

Output:

int(sqrt(3*x**4 - 6*x**2 - 2)/(9*x**8 - 36*x**6 + 24*x**4 + 24*x**2 + 4),x 
)