\(\int \frac {1}{(3+4 x^2+2 x^4)^{3/2}} \, dx\) [250]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 16, antiderivative size = 248 \[ \int \frac {1}{\left (3+4 x^2+2 x^4\right )^{3/2}} \, dx=-\frac {x \left (1+2 x^2\right )}{6 \sqrt {3+4 x^2+2 x^4}}+\frac {x \sqrt {3+4 x^2+2 x^4}}{3 \left (\sqrt {6}+2 x^2\right )}-\frac {\left (3+\sqrt {6} x^2\right ) \sqrt {\frac {3+4 x^2+2 x^4}{\left (3+\sqrt {6} x^2\right )^2}} E\left (2 \arctan \left (\sqrt [4]{\frac {2}{3}} x\right )|\frac {1}{2}-\frac {1}{\sqrt {6}}\right )}{6^{3/4} \sqrt {3+4 x^2+2 x^4}}+\frac {\left (2+\sqrt {6}\right ) \left (3+\sqrt {6} x^2\right ) \sqrt {\frac {3+4 x^2+2 x^4}{\left (3+\sqrt {6} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\sqrt [4]{\frac {2}{3}} x\right ),\frac {1}{2}-\frac {1}{\sqrt {6}}\right )}{4\ 6^{3/4} \sqrt {3+4 x^2+2 x^4}} \] Output:

-1/6*x*(2*x^2+1)/(2*x^4+4*x^2+3)^(1/2)+x*(2*x^4+4*x^2+3)^(1/2)/(3*6^(1/2)+ 
6*x^2)-1/6*(3+6^(1/2)*x^2)*((2*x^4+4*x^2+3)/(3+6^(1/2)*x^2)^2)^(1/2)*Ellip 
ticE(sin(2*arctan(1/3*2^(1/4)*3^(3/4)*x)),1/6*(18-6*6^(1/2))^(1/2))*6^(1/4 
)/(2*x^4+4*x^2+3)^(1/2)+1/24*(2+6^(1/2))*(3+6^(1/2)*x^2)*((2*x^4+4*x^2+3)/ 
(3+6^(1/2)*x^2)^2)^(1/2)*InverseJacobiAM(2*arctan(1/3*2^(1/4)*3^(3/4)*x),1 
/6*(18-6*6^(1/2))^(1/2))*6^(1/4)/(2*x^4+4*x^2+3)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 5.94 (sec) , antiderivative size = 322, normalized size of antiderivative = 1.30 \[ \int \frac {1}{\left (3+4 x^2+2 x^4\right )^{3/2}} \, dx=\frac {-2 \sqrt {-\frac {i}{-2 i+\sqrt {2}}} x \left (1+2 x^2\right )-2 i \left (-i+\sqrt {2}\right ) \sqrt {\frac {-2 i+\sqrt {2}-2 i x^2}{-2 i+\sqrt {2}}} \sqrt {\frac {2 i+\sqrt {2}+2 i x^2}{2 i+\sqrt {2}}} E\left (i \text {arcsinh}\left (\sqrt {-\frac {2 i}{-2 i+\sqrt {2}}} x\right )|\frac {2 i-\sqrt {2}}{2 i+\sqrt {2}}\right )+\left (2-i \sqrt {2}\right ) \sqrt {\frac {-2 i+\sqrt {2}-2 i x^2}{-2 i+\sqrt {2}}} \sqrt {\frac {2 i+\sqrt {2}+2 i x^2}{2 i+\sqrt {2}}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {2 i}{-2 i+\sqrt {2}}} x\right ),\frac {2 i-\sqrt {2}}{2 i+\sqrt {2}}\right )}{12 \sqrt {-\frac {i}{-2 i+\sqrt {2}}} \sqrt {3+4 x^2+2 x^4}} \] Input:

Integrate[(3 + 4*x^2 + 2*x^4)^(-3/2),x]
 

Output:

(-2*Sqrt[(-I)/(-2*I + Sqrt[2])]*x*(1 + 2*x^2) - (2*I)*(-I + Sqrt[2])*Sqrt[ 
(-2*I + Sqrt[2] - (2*I)*x^2)/(-2*I + Sqrt[2])]*Sqrt[(2*I + Sqrt[2] + (2*I) 
*x^2)/(2*I + Sqrt[2])]*EllipticE[I*ArcSinh[Sqrt[(-2*I)/(-2*I + Sqrt[2])]*x 
], (2*I - Sqrt[2])/(2*I + Sqrt[2])] + (2 - I*Sqrt[2])*Sqrt[(-2*I + Sqrt[2] 
 - (2*I)*x^2)/(-2*I + Sqrt[2])]*Sqrt[(2*I + Sqrt[2] + (2*I)*x^2)/(2*I + Sq 
rt[2])]*EllipticF[I*ArcSinh[Sqrt[(-2*I)/(-2*I + Sqrt[2])]*x], (2*I - Sqrt[ 
2])/(2*I + Sqrt[2])])/(12*Sqrt[(-I)/(-2*I + Sqrt[2])]*Sqrt[3 + 4*x^2 + 2*x 
^4])
 

Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 265, normalized size of antiderivative = 1.07, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {1405, 27, 1511, 27, 1416, 1509}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (2 x^4+4 x^2+3\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1405

\(\displaystyle \frac {1}{24} \int \frac {4 \left (2 x^2+3\right )}{\sqrt {2 x^4+4 x^2+3}}dx-\frac {x \left (2 x^2+1\right )}{6 \sqrt {2 x^4+4 x^2+3}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{6} \int \frac {2 x^2+3}{\sqrt {2 x^4+4 x^2+3}}dx-\frac {x \left (2 x^2+1\right )}{6 \sqrt {2 x^4+4 x^2+3}}\)

\(\Big \downarrow \) 1511

\(\displaystyle \frac {1}{6} \left (\left (3+\sqrt {6}\right ) \int \frac {1}{\sqrt {2 x^4+4 x^2+3}}dx-\sqrt {6} \int \frac {3-\sqrt {6} x^2}{3 \sqrt {2 x^4+4 x^2+3}}dx\right )-\frac {x \left (2 x^2+1\right )}{6 \sqrt {2 x^4+4 x^2+3}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{6} \left (\left (3+\sqrt {6}\right ) \int \frac {1}{\sqrt {2 x^4+4 x^2+3}}dx-\sqrt {\frac {2}{3}} \int \frac {3-\sqrt {6} x^2}{\sqrt {2 x^4+4 x^2+3}}dx\right )-\frac {x \left (2 x^2+1\right )}{6 \sqrt {2 x^4+4 x^2+3}}\)

\(\Big \downarrow \) 1416

\(\displaystyle \frac {1}{6} \left (\frac {\left (3+\sqrt {6}\right ) \left (\sqrt {6} x^2+3\right ) \sqrt {\frac {2 x^4+4 x^2+3}{\left (\sqrt {6} x^2+3\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\sqrt [4]{\frac {2}{3}} x\right ),\frac {1}{2}-\frac {1}{\sqrt {6}}\right )}{2 \sqrt [4]{6} \sqrt {2 x^4+4 x^2+3}}-\sqrt {\frac {2}{3}} \int \frac {3-\sqrt {6} x^2}{\sqrt {2 x^4+4 x^2+3}}dx\right )-\frac {x \left (2 x^2+1\right )}{6 \sqrt {2 x^4+4 x^2+3}}\)

\(\Big \downarrow \) 1509

\(\displaystyle \frac {1}{6} \left (\frac {\left (3+\sqrt {6}\right ) \left (\sqrt {6} x^2+3\right ) \sqrt {\frac {2 x^4+4 x^2+3}{\left (\sqrt {6} x^2+3\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\sqrt [4]{\frac {2}{3}} x\right ),\frac {1}{2}-\frac {1}{\sqrt {6}}\right )}{2 \sqrt [4]{6} \sqrt {2 x^4+4 x^2+3}}-\sqrt {\frac {2}{3}} \left (\frac {3^{3/4} \left (\sqrt {6} x^2+3\right ) \sqrt {\frac {2 x^4+4 x^2+3}{\left (\sqrt {6} x^2+3\right )^2}} E\left (2 \arctan \left (\sqrt [4]{\frac {2}{3}} x\right )|\frac {1}{2}-\frac {1}{\sqrt {6}}\right )}{\sqrt [4]{2} \sqrt {2 x^4+4 x^2+3}}-\frac {3 x \sqrt {2 x^4+4 x^2+3}}{\sqrt {6} x^2+3}\right )\right )-\frac {x \left (2 x^2+1\right )}{6 \sqrt {2 x^4+4 x^2+3}}\)

Input:

Int[(3 + 4*x^2 + 2*x^4)^(-3/2),x]
 

Output:

-1/6*(x*(1 + 2*x^2))/Sqrt[3 + 4*x^2 + 2*x^4] + (-(Sqrt[2/3]*((-3*x*Sqrt[3 
+ 4*x^2 + 2*x^4])/(3 + Sqrt[6]*x^2) + (3^(3/4)*(3 + Sqrt[6]*x^2)*Sqrt[(3 + 
 4*x^2 + 2*x^4)/(3 + Sqrt[6]*x^2)^2]*EllipticE[2*ArcTan[(2/3)^(1/4)*x], 1/ 
2 - 1/Sqrt[6]])/(2^(1/4)*Sqrt[3 + 4*x^2 + 2*x^4]))) + ((3 + Sqrt[6])*(3 + 
Sqrt[6]*x^2)*Sqrt[(3 + 4*x^2 + 2*x^4)/(3 + Sqrt[6]*x^2)^2]*EllipticF[2*Arc 
Tan[(2/3)^(1/4)*x], 1/2 - 1/Sqrt[6]])/(2*6^(1/4)*Sqrt[3 + 4*x^2 + 2*x^4])) 
/6
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1405
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-x)*(b^2 
- 2*a*c + b*c*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c)) 
), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c))   Int[(b^2 - 2*a*c + 2*(p + 1)*( 
b^2 - 4*a*c) + b*c*(4*p + 7)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; Fr 
eeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && IntegerQ[2*p]
 

rule 1416
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c 
/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/ 
(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c)) 
], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]
 

rule 1509
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q 
^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2* 
x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2 
/(4*c))], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 
- 4*a*c, 0] && PosQ[c/a]
 

rule 1511
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 2]}, Simp[(e + d*q)/q   Int[1/Sqrt[a + b*x^2 + c*x^ 
4], x], x] - Simp[e/q   Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x] /; 
NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && Pos 
Q[c/a]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 2.20 (sec) , antiderivative size = 237, normalized size of antiderivative = 0.96

method result size
risch \(-\frac {x \left (2 x^{2}+1\right )}{6 \sqrt {2 x^{4}+4 x^{2}+3}}+\frac {3 \sqrt {1-\left (-\frac {2}{3}+\frac {i \sqrt {2}}{3}\right ) x^{2}}\, \sqrt {1-\left (-\frac {2}{3}-\frac {i \sqrt {2}}{3}\right ) x^{2}}\, \operatorname {EllipticF}\left (\frac {x \sqrt {-6+3 i \sqrt {2}}}{3}, \frac {\sqrt {3+6 i \sqrt {2}}}{3}\right )}{2 \sqrt {-6+3 i \sqrt {2}}\, \sqrt {2 x^{4}+4 x^{2}+3}}-\frac {6 \sqrt {1-\left (-\frac {2}{3}+\frac {i \sqrt {2}}{3}\right ) x^{2}}\, \sqrt {1-\left (-\frac {2}{3}-\frac {i \sqrt {2}}{3}\right ) x^{2}}\, \left (\operatorname {EllipticF}\left (\frac {x \sqrt {-6+3 i \sqrt {2}}}{3}, \frac {\sqrt {3+6 i \sqrt {2}}}{3}\right )-\operatorname {EllipticE}\left (\frac {x \sqrt {-6+3 i \sqrt {2}}}{3}, \frac {\sqrt {3+6 i \sqrt {2}}}{3}\right )\right )}{\sqrt {-6+3 i \sqrt {2}}\, \sqrt {2 x^{4}+4 x^{2}+3}\, \left (4+2 i \sqrt {2}\right )}\) \(237\)
default \(-\frac {4 \left (\frac {1}{12} x^{3}+\frac {1}{24} x \right )}{\sqrt {2 x^{4}+4 x^{2}+3}}+\frac {3 \sqrt {1-\left (-\frac {2}{3}+\frac {i \sqrt {2}}{3}\right ) x^{2}}\, \sqrt {1-\left (-\frac {2}{3}-\frac {i \sqrt {2}}{3}\right ) x^{2}}\, \operatorname {EllipticF}\left (\frac {x \sqrt {-6+3 i \sqrt {2}}}{3}, \frac {\sqrt {3+6 i \sqrt {2}}}{3}\right )}{2 \sqrt {-6+3 i \sqrt {2}}\, \sqrt {2 x^{4}+4 x^{2}+3}}-\frac {6 \sqrt {1-\left (-\frac {2}{3}+\frac {i \sqrt {2}}{3}\right ) x^{2}}\, \sqrt {1-\left (-\frac {2}{3}-\frac {i \sqrt {2}}{3}\right ) x^{2}}\, \left (\operatorname {EllipticF}\left (\frac {x \sqrt {-6+3 i \sqrt {2}}}{3}, \frac {\sqrt {3+6 i \sqrt {2}}}{3}\right )-\operatorname {EllipticE}\left (\frac {x \sqrt {-6+3 i \sqrt {2}}}{3}, \frac {\sqrt {3+6 i \sqrt {2}}}{3}\right )\right )}{\sqrt {-6+3 i \sqrt {2}}\, \sqrt {2 x^{4}+4 x^{2}+3}\, \left (4+2 i \sqrt {2}\right )}\) \(238\)
elliptic \(-\frac {4 \left (\frac {1}{12} x^{3}+\frac {1}{24} x \right )}{\sqrt {2 x^{4}+4 x^{2}+3}}+\frac {3 \sqrt {1-\left (-\frac {2}{3}+\frac {i \sqrt {2}}{3}\right ) x^{2}}\, \sqrt {1-\left (-\frac {2}{3}-\frac {i \sqrt {2}}{3}\right ) x^{2}}\, \operatorname {EllipticF}\left (\frac {x \sqrt {-6+3 i \sqrt {2}}}{3}, \frac {\sqrt {3+6 i \sqrt {2}}}{3}\right )}{2 \sqrt {-6+3 i \sqrt {2}}\, \sqrt {2 x^{4}+4 x^{2}+3}}-\frac {6 \sqrt {1-\left (-\frac {2}{3}+\frac {i \sqrt {2}}{3}\right ) x^{2}}\, \sqrt {1-\left (-\frac {2}{3}-\frac {i \sqrt {2}}{3}\right ) x^{2}}\, \left (\operatorname {EllipticF}\left (\frac {x \sqrt {-6+3 i \sqrt {2}}}{3}, \frac {\sqrt {3+6 i \sqrt {2}}}{3}\right )-\operatorname {EllipticE}\left (\frac {x \sqrt {-6+3 i \sqrt {2}}}{3}, \frac {\sqrt {3+6 i \sqrt {2}}}{3}\right )\right )}{\sqrt {-6+3 i \sqrt {2}}\, \sqrt {2 x^{4}+4 x^{2}+3}\, \left (4+2 i \sqrt {2}\right )}\) \(238\)

Input:

int(1/(2*x^4+4*x^2+3)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-1/6*x*(2*x^2+1)/(2*x^4+4*x^2+3)^(1/2)+3/2/(-6+3*I*2^(1/2))^(1/2)*(1-(-2/3 
+1/3*I*2^(1/2))*x^2)^(1/2)*(1-(-2/3-1/3*I*2^(1/2))*x^2)^(1/2)/(2*x^4+4*x^2 
+3)^(1/2)*EllipticF(1/3*x*(-6+3*I*2^(1/2))^(1/2),1/3*(3+6*I*2^(1/2))^(1/2) 
)-6/(-6+3*I*2^(1/2))^(1/2)*(1-(-2/3+1/3*I*2^(1/2))*x^2)^(1/2)*(1-(-2/3-1/3 
*I*2^(1/2))*x^2)^(1/2)/(2*x^4+4*x^2+3)^(1/2)/(4+2*I*2^(1/2))*(EllipticF(1/ 
3*x*(-6+3*I*2^(1/2))^(1/2),1/3*(3+6*I*2^(1/2))^(1/2))-EllipticE(1/3*x*(-6+ 
3*I*2^(1/2))^(1/2),1/3*(3+6*I*2^(1/2))^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 165, normalized size of antiderivative = 0.67 \[ \int \frac {1}{\left (3+4 x^2+2 x^4\right )^{3/2}} \, dx=\frac {2 \, \sqrt {3} {\left (4 \, x^{4} + 8 \, x^{2} - \sqrt {-2} {\left (2 \, x^{4} + 4 \, x^{2} + 3\right )} + 6\right )} \sqrt {\frac {1}{3} \, \sqrt {-2} - \frac {2}{3}} E(\arcsin \left (x \sqrt {\frac {1}{3} \, \sqrt {-2} - \frac {2}{3}}\right )\,|\,\frac {2}{3} \, \sqrt {-2} + \frac {1}{3}) - \sqrt {3} {\left (20 \, x^{4} + 40 \, x^{2} + \sqrt {-2} {\left (2 \, x^{4} + 4 \, x^{2} + 3\right )} + 30\right )} \sqrt {\frac {1}{3} \, \sqrt {-2} - \frac {2}{3}} F(\arcsin \left (x \sqrt {\frac {1}{3} \, \sqrt {-2} - \frac {2}{3}}\right )\,|\,\frac {2}{3} \, \sqrt {-2} + \frac {1}{3}) - 6 \, \sqrt {2 \, x^{4} + 4 \, x^{2} + 3} {\left (2 \, x^{3} + x\right )}}{36 \, {\left (2 \, x^{4} + 4 \, x^{2} + 3\right )}} \] Input:

integrate(1/(2*x^4+4*x^2+3)^(3/2),x, algorithm="fricas")
 

Output:

1/36*(2*sqrt(3)*(4*x^4 + 8*x^2 - sqrt(-2)*(2*x^4 + 4*x^2 + 3) + 6)*sqrt(1/ 
3*sqrt(-2) - 2/3)*elliptic_e(arcsin(x*sqrt(1/3*sqrt(-2) - 2/3)), 2/3*sqrt( 
-2) + 1/3) - sqrt(3)*(20*x^4 + 40*x^2 + sqrt(-2)*(2*x^4 + 4*x^2 + 3) + 30) 
*sqrt(1/3*sqrt(-2) - 2/3)*elliptic_f(arcsin(x*sqrt(1/3*sqrt(-2) - 2/3)), 2 
/3*sqrt(-2) + 1/3) - 6*sqrt(2*x^4 + 4*x^2 + 3)*(2*x^3 + x))/(2*x^4 + 4*x^2 
 + 3)
 

Sympy [F]

\[ \int \frac {1}{\left (3+4 x^2+2 x^4\right )^{3/2}} \, dx=\int \frac {1}{\left (2 x^{4} + 4 x^{2} + 3\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(1/(2*x**4+4*x**2+3)**(3/2),x)
 

Output:

Integral((2*x**4 + 4*x**2 + 3)**(-3/2), x)
 

Maxima [F]

\[ \int \frac {1}{\left (3+4 x^2+2 x^4\right )^{3/2}} \, dx=\int { \frac {1}{{\left (2 \, x^{4} + 4 \, x^{2} + 3\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(2*x^4+4*x^2+3)^(3/2),x, algorithm="maxima")
 

Output:

integrate((2*x^4 + 4*x^2 + 3)^(-3/2), x)
 

Giac [F]

\[ \int \frac {1}{\left (3+4 x^2+2 x^4\right )^{3/2}} \, dx=\int { \frac {1}{{\left (2 \, x^{4} + 4 \, x^{2} + 3\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(2*x^4+4*x^2+3)^(3/2),x, algorithm="giac")
 

Output:

integrate((2*x^4 + 4*x^2 + 3)^(-3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (3+4 x^2+2 x^4\right )^{3/2}} \, dx=\int \frac {1}{{\left (2\,x^4+4\,x^2+3\right )}^{3/2}} \,d x \] Input:

int(1/(4*x^2 + 2*x^4 + 3)^(3/2),x)
 

Output:

int(1/(4*x^2 + 2*x^4 + 3)^(3/2), x)
 

Reduce [F]

\[ \int \frac {1}{\left (3+4 x^2+2 x^4\right )^{3/2}} \, dx=\int \frac {\sqrt {2 x^{4}+4 x^{2}+3}}{4 x^{8}+16 x^{6}+28 x^{4}+24 x^{2}+9}d x \] Input:

int(1/(2*x^4+4*x^2+3)^(3/2),x)
 

Output:

int(sqrt(2*x**4 + 4*x**2 + 3)/(4*x**8 + 16*x**6 + 28*x**4 + 24*x**2 + 9),x 
)