\(\int \frac {1}{x^4 \sqrt {a+b x^2+c x^4}} \, dx\) [994]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 20, antiderivative size = 317 \[ \int \frac {1}{x^4 \sqrt {a+b x^2+c x^4}} \, dx=-\frac {\sqrt {a+b x^2+c x^4}}{3 a x^3}+\frac {2 b \sqrt {a+b x^2+c x^4}}{3 a^{3/2} x \left (\sqrt {a}+\sqrt {c} x^2\right )}+\frac {2 b \sqrt [4]{c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{3 a^{7/4} \sqrt {a+b x^2+c x^4}}-\frac {\left (2 b+\sqrt {a} \sqrt {c}\right ) \sqrt [4]{c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{6 a^{7/4} \sqrt {a+b x^2+c x^4}} \] Output:

-1/3*(c*x^4+b*x^2+a)^(1/2)/a/x^3+2/3*b*(c*x^4+b*x^2+a)^(1/2)/a^(3/2)/x/(a^ 
(1/2)+c^(1/2)*x^2)+2/3*b*c^(1/4)*(a^(1/2)+c^(1/2)*x^2)*((c*x^4+b*x^2+a)/(a 
^(1/2)+c^(1/2)*x^2)^2)^(1/2)*EllipticE(sin(2*arctan(c^(1/4)*x/a^(1/4))),1/ 
2*(2-b/a^(1/2)/c^(1/2))^(1/2))/a^(7/4)/(c*x^4+b*x^2+a)^(1/2)-1/6*(2*b+a^(1 
/2)*c^(1/2))*c^(1/4)*(a^(1/2)+c^(1/2)*x^2)*((c*x^4+b*x^2+a)/(a^(1/2)+c^(1/ 
2)*x^2)^2)^(1/2)*InverseJacobiAM(2*arctan(c^(1/4)*x/a^(1/4)),1/2*(2-b/a^(1 
/2)/c^(1/2))^(1/2))/a^(7/4)/(c*x^4+b*x^2+a)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.59 (sec) , antiderivative size = 459, normalized size of antiderivative = 1.45 \[ \int \frac {1}{x^4 \sqrt {a+b x^2+c x^4}} \, dx=\frac {-2 \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} \left (a-2 b x^2\right ) \left (a+b x^2+c x^4\right )-i b \left (-b+\sqrt {b^2-4 a c}\right ) x^3 \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} \sqrt {\frac {2 b-2 \sqrt {b^2-4 a c}+4 c x^2}{b-\sqrt {b^2-4 a c}}} E\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right )|\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )+i \left (-b^2+a c+b \sqrt {b^2-4 a c}\right ) x^3 \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} \sqrt {\frac {2 b-2 \sqrt {b^2-4 a c}+4 c x^2}{b-\sqrt {b^2-4 a c}}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right ),\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )}{6 a^2 \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x^3 \sqrt {a+b x^2+c x^4}} \] Input:

Integrate[1/(x^4*Sqrt[a + b*x^2 + c*x^4]),x]
 

Output:

(-2*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*(a - 2*b*x^2)*(a + b*x^2 + c*x^4) - I* 
b*(-b + Sqrt[b^2 - 4*a*c])*x^3*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + 
 Sqrt[b^2 - 4*a*c])]*Sqrt[(2*b - 2*Sqrt[b^2 - 4*a*c] + 4*c*x^2)/(b - Sqrt[ 
b^2 - 4*a*c])]*EllipticE[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])] 
*x], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*c])] + I*(-b^2 + a*c + b* 
Sqrt[b^2 - 4*a*c])*x^3*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^ 
2 - 4*a*c])]*Sqrt[(2*b - 2*Sqrt[b^2 - 4*a*c] + 4*c*x^2)/(b - Sqrt[b^2 - 4* 
a*c])]*EllipticF[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x], (b 
+ Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*c])])/(6*a^2*Sqrt[c/(b + Sqrt[b^2 
 - 4*a*c])]*x^3*Sqrt[a + b*x^2 + c*x^4])
 

Rubi [A] (verified)

Time = 0.77 (sec) , antiderivative size = 350, normalized size of antiderivative = 1.10, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.450, Rules used = {1443, 25, 1604, 25, 27, 1511, 27, 1416, 1509}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^4 \sqrt {a+b x^2+c x^4}} \, dx\)

\(\Big \downarrow \) 1443

\(\displaystyle \frac {\int -\frac {c x^2+2 b}{x^2 \sqrt {c x^4+b x^2+a}}dx}{3 a}-\frac {\sqrt {a+b x^2+c x^4}}{3 a x^3}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int \frac {c x^2+2 b}{x^2 \sqrt {c x^4+b x^2+a}}dx}{3 a}-\frac {\sqrt {a+b x^2+c x^4}}{3 a x^3}\)

\(\Big \downarrow \) 1604

\(\displaystyle -\frac {-\frac {\int -\frac {c \left (2 b x^2+a\right )}{\sqrt {c x^4+b x^2+a}}dx}{a}-\frac {2 b \sqrt {a+b x^2+c x^4}}{a x}}{3 a}-\frac {\sqrt {a+b x^2+c x^4}}{3 a x^3}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\frac {\int \frac {c \left (2 b x^2+a\right )}{\sqrt {c x^4+b x^2+a}}dx}{a}-\frac {2 b \sqrt {a+b x^2+c x^4}}{a x}}{3 a}-\frac {\sqrt {a+b x^2+c x^4}}{3 a x^3}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {c \int \frac {2 b x^2+a}{\sqrt {c x^4+b x^2+a}}dx}{a}-\frac {2 b \sqrt {a+b x^2+c x^4}}{a x}}{3 a}-\frac {\sqrt {a+b x^2+c x^4}}{3 a x^3}\)

\(\Big \downarrow \) 1511

\(\displaystyle -\frac {\frac {c \left (\sqrt {a} \left (\sqrt {a}+\frac {2 b}{\sqrt {c}}\right ) \int \frac {1}{\sqrt {c x^4+b x^2+a}}dx-\frac {2 \sqrt {a} b \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {a} \sqrt {c x^4+b x^2+a}}dx}{\sqrt {c}}\right )}{a}-\frac {2 b \sqrt {a+b x^2+c x^4}}{a x}}{3 a}-\frac {\sqrt {a+b x^2+c x^4}}{3 a x^3}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {c \left (\sqrt {a} \left (\sqrt {a}+\frac {2 b}{\sqrt {c}}\right ) \int \frac {1}{\sqrt {c x^4+b x^2+a}}dx-\frac {2 b \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {c x^4+b x^2+a}}dx}{\sqrt {c}}\right )}{a}-\frac {2 b \sqrt {a+b x^2+c x^4}}{a x}}{3 a}-\frac {\sqrt {a+b x^2+c x^4}}{3 a x^3}\)

\(\Big \downarrow \) 1416

\(\displaystyle -\frac {\frac {c \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\frac {2 b}{\sqrt {c}}\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {2 b \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {c x^4+b x^2+a}}dx}{\sqrt {c}}\right )}{a}-\frac {2 b \sqrt {a+b x^2+c x^4}}{a x}}{3 a}-\frac {\sqrt {a+b x^2+c x^4}}{3 a x^3}\)

\(\Big \downarrow \) 1509

\(\displaystyle -\frac {\frac {c \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\frac {2 b}{\sqrt {c}}\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {2 b \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{\sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {x \sqrt {a+b x^2+c x^4}}{\sqrt {a}+\sqrt {c} x^2}\right )}{\sqrt {c}}\right )}{a}-\frac {2 b \sqrt {a+b x^2+c x^4}}{a x}}{3 a}-\frac {\sqrt {a+b x^2+c x^4}}{3 a x^3}\)

Input:

Int[1/(x^4*Sqrt[a + b*x^2 + c*x^4]),x]
 

Output:

-1/3*Sqrt[a + b*x^2 + c*x^4]/(a*x^3) - ((-2*b*Sqrt[a + b*x^2 + c*x^4])/(a* 
x) + (c*((-2*b*(-((x*Sqrt[a + b*x^2 + c*x^4])/(Sqrt[a] + Sqrt[c]*x^2)) + ( 
a^(1/4)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c 
]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c] 
))/4])/(c^(1/4)*Sqrt[a + b*x^2 + c*x^4])))/Sqrt[c] + (a^(1/4)*(Sqrt[a] + ( 
2*b)/Sqrt[c])*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + 
Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*S 
qrt[c]))/4])/(2*c^(1/4)*Sqrt[a + b*x^2 + c*x^4])))/a)/(3*a)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1416
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c 
/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/ 
(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c)) 
], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]
 

rule 1443
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> Simp[(d*x)^(m + 1)*((a + b*x^2 + c*x^4)^(p + 1)/(a*d*(m + 1))), x] - Sim 
p[1/(a*d^2*(m + 1))   Int[(d*x)^(m + 2)*(b*(m + 2*p + 3) + c*(m + 4*p + 5)* 
x^2)*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b^2 
- 4*a*c, 0] && LtQ[m, -1] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
 

rule 1509
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q 
^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2* 
x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2 
/(4*c))], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 
- 4*a*c, 0] && PosQ[c/a]
 

rule 1511
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 2]}, Simp[(e + d*q)/q   Int[1/Sqrt[a + b*x^2 + c*x^ 
4], x], x] - Simp[e/q   Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x] /; 
NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && Pos 
Q[c/a]
 

rule 1604
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*( 
x_)^4)^(p_), x_Symbol] :> Simp[d*(f*x)^(m + 1)*((a + b*x^2 + c*x^4)^(p + 1) 
/(a*f*(m + 1))), x] + Simp[1/(a*f^2*(m + 1))   Int[(f*x)^(m + 2)*(a + b*x^2 
 + c*x^4)^p*Simp[a*e*(m + 1) - b*d*(m + 2*p + 3) - c*d*(m + 4*p + 5)*x^2, x 
], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[ 
m, -1] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
 
Maple [A] (verified)

Time = 2.84 (sec) , antiderivative size = 399, normalized size of antiderivative = 1.26

method result size
risch \(-\frac {\sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (-2 b \,x^{2}+a \right )}{3 a^{2} x^{3}}-\frac {c \left (\frac {a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \operatorname {EllipticF}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{4 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}-\frac {b a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (\operatorname {EllipticF}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-\operatorname {EllipticE}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{\sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\right )}{3 a^{2}}\) \(399\)
default \(-\frac {\sqrt {c \,x^{4}+b \,x^{2}+a}}{3 a \,x^{3}}+\frac {2 b \sqrt {c \,x^{4}+b \,x^{2}+a}}{3 a^{2} x}-\frac {c \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \operatorname {EllipticF}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{12 a \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}+\frac {b c \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (\operatorname {EllipticF}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-\operatorname {EllipticE}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{3 a \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\) \(413\)
elliptic \(-\frac {\sqrt {c \,x^{4}+b \,x^{2}+a}}{3 a \,x^{3}}+\frac {2 b \sqrt {c \,x^{4}+b \,x^{2}+a}}{3 a^{2} x}-\frac {c \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \operatorname {EllipticF}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{12 a \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}+\frac {b c \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (\operatorname {EllipticF}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-\operatorname {EllipticE}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{3 a \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\) \(413\)

Input:

int(1/x^4/(c*x^4+b*x^2+a)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-1/3*(c*x^4+b*x^2+a)^(1/2)*(-2*b*x^2+a)/a^2/x^3-1/3*c/a^2*(1/4*a*2^(1/2)/( 
(-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2) 
*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)*EllipticF( 
1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2 
)^(1/2))/a/c)^(1/2))-b*a*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(- 
b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2 
)/(c*x^4+b*x^2+a)^(1/2)/(b+(-4*a*c+b^2)^(1/2))*(EllipticF(1/2*x*2^(1/2)*(( 
-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1 
/2))-EllipticE(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b 
*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 306, normalized size of antiderivative = 0.97 \[ \int \frac {1}{x^4 \sqrt {a+b x^2+c x^4}} \, dx=\frac {2 \, \sqrt {\frac {1}{2}} {\left (a b x^{3} \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b^{2} x^{3}\right )} \sqrt {a} \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}} E(\arcsin \left (\sqrt {\frac {1}{2}} x \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}}\right )\,|\,\frac {a b \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} + b^{2} - 2 \, a c}{2 \, a c}) + \sqrt {\frac {1}{2}} {\left ({\left (a^{2} - 2 \, a b\right )} x^{3} \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} + {\left (a b + 2 \, b^{2}\right )} x^{3}\right )} \sqrt {a} \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}} F(\arcsin \left (\sqrt {\frac {1}{2}} x \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}}\right )\,|\,\frac {a b \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} + b^{2} - 2 \, a c}{2 \, a c}) + 2 \, \sqrt {c x^{4} + b x^{2} + a} {\left (2 \, a b x^{2} - a^{2}\right )}}{6 \, a^{3} x^{3}} \] Input:

integrate(1/x^4/(c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas")
 

Output:

1/6*(2*sqrt(1/2)*(a*b*x^3*sqrt((b^2 - 4*a*c)/a^2) - b^2*x^3)*sqrt(a)*sqrt( 
(a*sqrt((b^2 - 4*a*c)/a^2) - b)/a)*elliptic_e(arcsin(sqrt(1/2)*x*sqrt((a*s 
qrt((b^2 - 4*a*c)/a^2) - b)/a)), 1/2*(a*b*sqrt((b^2 - 4*a*c)/a^2) + b^2 - 
2*a*c)/(a*c)) + sqrt(1/2)*((a^2 - 2*a*b)*x^3*sqrt((b^2 - 4*a*c)/a^2) + (a* 
b + 2*b^2)*x^3)*sqrt(a)*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) - b)/a)*elliptic_f 
(arcsin(sqrt(1/2)*x*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) - b)/a)), 1/2*(a*b*sqr 
t((b^2 - 4*a*c)/a^2) + b^2 - 2*a*c)/(a*c)) + 2*sqrt(c*x^4 + b*x^2 + a)*(2* 
a*b*x^2 - a^2))/(a^3*x^3)
 

Sympy [F]

\[ \int \frac {1}{x^4 \sqrt {a+b x^2+c x^4}} \, dx=\int \frac {1}{x^{4} \sqrt {a + b x^{2} + c x^{4}}}\, dx \] Input:

integrate(1/x**4/(c*x**4+b*x**2+a)**(1/2),x)
 

Output:

Integral(1/(x**4*sqrt(a + b*x**2 + c*x**4)), x)
 

Maxima [F]

\[ \int \frac {1}{x^4 \sqrt {a+b x^2+c x^4}} \, dx=\int { \frac {1}{\sqrt {c x^{4} + b x^{2} + a} x^{4}} \,d x } \] Input:

integrate(1/x^4/(c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima")
 

Output:

integrate(1/(sqrt(c*x^4 + b*x^2 + a)*x^4), x)
 

Giac [F]

\[ \int \frac {1}{x^4 \sqrt {a+b x^2+c x^4}} \, dx=\int { \frac {1}{\sqrt {c x^{4} + b x^{2} + a} x^{4}} \,d x } \] Input:

integrate(1/x^4/(c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")
 

Output:

integrate(1/(sqrt(c*x^4 + b*x^2 + a)*x^4), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^4 \sqrt {a+b x^2+c x^4}} \, dx=\int \frac {1}{x^4\,\sqrt {c\,x^4+b\,x^2+a}} \,d x \] Input:

int(1/(x^4*(a + b*x^2 + c*x^4)^(1/2)),x)
 

Output:

int(1/(x^4*(a + b*x^2 + c*x^4)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {1}{x^4 \sqrt {a+b x^2+c x^4}} \, dx=\int \frac {\sqrt {c \,x^{4}+b \,x^{2}+a}}{c \,x^{8}+b \,x^{6}+a \,x^{4}}d x \] Input:

int(1/x^4/(c*x^4+b*x^2+a)^(1/2),x)
 

Output:

int(sqrt(a + b*x**2 + c*x**4)/(a*x**4 + b*x**6 + c*x**8),x)