\(\int (e x)^{1-4 p} (a+b x^2+c x^4)^p \, dx\) [1109]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 160 \[ \int (e x)^{1-4 p} \left (a+b x^2+c x^4\right )^p \, dx=\frac {(e x)^{2-4 p} \left (1+\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}\right )^{-p} \left (1+\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )^{-p} \left (a+b x^2+c x^4\right )^p \operatorname {AppellF1}\left (1-2 p,-p,-p,2 (1-p),-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )}{2 e (1-2 p)} \] Output:

1/2*(e*x)^(2-4*p)*(c*x^4+b*x^2+a)^p*AppellF1(1-2*p,-p,-p,2-2*p,-2*c*x^2/(b 
-(-4*a*c+b^2)^(1/2)),-2*c*x^2/(b+(-4*a*c+b^2)^(1/2)))/e/(1-2*p)/((1+2*c*x^ 
2/(b-(-4*a*c+b^2)^(1/2)))^p)/((1+2*c*x^2/(b+(-4*a*c+b^2)^(1/2)))^p)
 

Mathematica [A] (warning: unable to verify)

Time = 0.30 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.14 \[ \int (e x)^{1-4 p} \left (a+b x^2+c x^4\right )^p \, dx=\frac {e x^2 (e x)^{-4 p} \left (\frac {b-\sqrt {b^2-4 a c}+2 c x^2}{b-\sqrt {b^2-4 a c}}\right )^{-p} \left (\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}\right )^{-p} \left (a+b x^2+c x^4\right )^p \operatorname {AppellF1}\left (1-2 p,-p,-p,2-2 p,-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}},\frac {2 c x^2}{-b+\sqrt {b^2-4 a c}}\right )}{2-4 p} \] Input:

Integrate[(e*x)^(1 - 4*p)*(a + b*x^2 + c*x^4)^p,x]
 

Output:

(e*x^2*(a + b*x^2 + c*x^4)^p*AppellF1[1 - 2*p, -p, -p, 2 - 2*p, (-2*c*x^2) 
/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^2)/(-b + Sqrt[b^2 - 4*a*c])])/((2 - 4*p)* 
(e*x)^(4*p)*((b - Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b - Sqrt[b^2 - 4*a*c]))^p* 
((b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c]))^p)
 

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {1461, 394}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (e x)^{1-4 p} \left (a+b x^2+c x^4\right )^p \, dx\)

\(\Big \downarrow \) 1461

\(\displaystyle \left (\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}+1\right )^{-p} \left (\frac {2 c x^2}{\sqrt {b^2-4 a c}+b}+1\right )^{-p} \left (a+b x^2+c x^4\right )^p \int (e x)^{1-4 p} \left (\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}+1\right )^p \left (\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}+1\right )^pdx\)

\(\Big \downarrow \) 394

\(\displaystyle \frac {(e x)^{2-4 p} \left (\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}+1\right )^{-p} \left (\frac {2 c x^2}{\sqrt {b^2-4 a c}+b}+1\right )^{-p} \left (a+b x^2+c x^4\right )^p \operatorname {AppellF1}\left (1-2 p,-p,-p,2 (1-p),-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )}{2 e (1-2 p)}\)

Input:

Int[(e*x)^(1 - 4*p)*(a + b*x^2 + c*x^4)^p,x]
 

Output:

((e*x)^(2 - 4*p)*(a + b*x^2 + c*x^4)^p*AppellF1[1 - 2*p, -p, -p, 2*(1 - p) 
, (-2*c*x^2)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]) 
/(2*e*(1 - 2*p)*(1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^2)/( 
b + Sqrt[b^2 - 4*a*c]))^p)
 

Defintions of rubi rules used

rule 394
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[a^p*c^q*((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m + 1)/2 
, -p, -q, 1 + (m + 1)/2, (-b)*(x^2/a), (-d)*(x^2/c)], x] /; FreeQ[{a, b, c, 
 d, e, m, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, 1] && (Int 
egerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 1461
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> Simp[a^IntPart[p]*((a + b*x^2 + c*x^4)^FracPart[p]/((1 + 2*c*(x^2/(b + R 
t[b^2 - 4*a*c, 2])))^FracPart[p]*(1 + 2*c*(x^2/(b - Rt[b^2 - 4*a*c, 2])))^F 
racPart[p]))   Int[(d*x)^m*(1 + 2*c*(x^2/(b + Sqrt[b^2 - 4*a*c])))^p*(1 + 2 
*c*(x^2/(b - Sqrt[b^2 - 4*a*c])))^p, x], x] /; FreeQ[{a, b, c, d, m, p}, x]
 
Maple [F]

\[\int \left (e x \right )^{1-4 p} \left (c \,x^{4}+b \,x^{2}+a \right )^{p}d x\]

Input:

int((e*x)^(1-4*p)*(c*x^4+b*x^2+a)^p,x)
 

Output:

int((e*x)^(1-4*p)*(c*x^4+b*x^2+a)^p,x)
 

Fricas [F]

\[ \int (e x)^{1-4 p} \left (a+b x^2+c x^4\right )^p \, dx=\int { {\left (c x^{4} + b x^{2} + a\right )}^{p} \left (e x\right )^{-4 \, p + 1} \,d x } \] Input:

integrate((e*x)^(1-4*p)*(c*x^4+b*x^2+a)^p,x, algorithm="fricas")
 

Output:

integral((c*x^4 + b*x^2 + a)^p*(e*x)^(-4*p + 1), x)
 

Sympy [F(-1)]

Timed out. \[ \int (e x)^{1-4 p} \left (a+b x^2+c x^4\right )^p \, dx=\text {Timed out} \] Input:

integrate((e*x)**(1-4*p)*(c*x**4+b*x**2+a)**p,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int (e x)^{1-4 p} \left (a+b x^2+c x^4\right )^p \, dx=\int { {\left (c x^{4} + b x^{2} + a\right )}^{p} \left (e x\right )^{-4 \, p + 1} \,d x } \] Input:

integrate((e*x)^(1-4*p)*(c*x^4+b*x^2+a)^p,x, algorithm="maxima")
 

Output:

integrate((c*x^4 + b*x^2 + a)^p*(e*x)^(-4*p + 1), x)
 

Giac [F]

\[ \int (e x)^{1-4 p} \left (a+b x^2+c x^4\right )^p \, dx=\int { {\left (c x^{4} + b x^{2} + a\right )}^{p} \left (e x\right )^{-4 \, p + 1} \,d x } \] Input:

integrate((e*x)^(1-4*p)*(c*x^4+b*x^2+a)^p,x, algorithm="giac")
 

Output:

integrate((c*x^4 + b*x^2 + a)^p*(e*x)^(-4*p + 1), x)
 

Mupad [F(-1)]

Timed out. \[ \int (e x)^{1-4 p} \left (a+b x^2+c x^4\right )^p \, dx=\int {\left (e\,x\right )}^{1-4\,p}\,{\left (c\,x^4+b\,x^2+a\right )}^p \,d x \] Input:

int((e*x)^(1 - 4*p)*(a + b*x^2 + c*x^4)^p,x)
 

Output:

int((e*x)^(1 - 4*p)*(a + b*x^2 + c*x^4)^p, x)
 

Reduce [F]

\[ \int (e x)^{1-4 p} \left (a+b x^2+c x^4\right )^p \, dx=\frac {e \left (-2 \left (c \,x^{4}+b \,x^{2}+a \right )^{p} a +\left (c \,x^{4}+b \,x^{2}+a \right )^{p} b \,x^{2}-8 x^{4 p} \left (\int \frac {\left (c \,x^{4}+b \,x^{2}+a \right )^{p}}{x^{4 p} a x +x^{4 p} b \,x^{3}+x^{4 p} c \,x^{5}}d x \right ) a^{2} p +2 x^{4 p} \left (\int \frac {\left (c \,x^{4}+b \,x^{2}+a \right )^{p} x^{3}}{x^{4 p} a +x^{4 p} b \,x^{2}+x^{4 p} c \,x^{4}}d x \right ) b^{2} p \right )}{2 x^{4 p} e^{4 p} b} \] Input:

int((e*x)^(1-4*p)*(c*x^4+b*x^2+a)^p,x)
 

Output:

(e*( - 2*(a + b*x**2 + c*x**4)**p*a + (a + b*x**2 + c*x**4)**p*b*x**2 - 8* 
x**(4*p)*int((a + b*x**2 + c*x**4)**p/(x**(4*p)*a*x + x**(4*p)*b*x**3 + x* 
*(4*p)*c*x**5),x)*a**2*p + 2*x**(4*p)*int(((a + b*x**2 + c*x**4)**p*x**3)/ 
(x**(4*p)*a + x**(4*p)*b*x**2 + x**(4*p)*c*x**4),x)*b**2*p))/(2*x**(4*p)*e 
**(4*p)*b)