\(\int \frac {x^{5/2}}{b x^2+c x^4} \, dx\) [121]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 137 \[ \int \frac {x^{5/2}}{b x^2+c x^4} \, dx=-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} c^{3/4}}+\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} c^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}{\sqrt {b}+\sqrt {c} x}\right )}{\sqrt {2} \sqrt [4]{b} c^{3/4}} \] Output:

-1/2*arctan(1-2^(1/2)*c^(1/4)*x^(1/2)/b^(1/4))*2^(1/2)/b^(1/4)/c^(3/4)+1/2 
*arctan(1+2^(1/2)*c^(1/4)*x^(1/2)/b^(1/4))*2^(1/2)/b^(1/4)/c^(3/4)-1/2*arc 
tanh(2^(1/2)*b^(1/4)*c^(1/4)*x^(1/2)/(b^(1/2)+c^(1/2)*x))*2^(1/2)/b^(1/4)/ 
c^(3/4)
 

Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.66 \[ \int \frac {x^{5/2}}{b x^2+c x^4} \, dx=-\frac {\arctan \left (\frac {\sqrt {b}-\sqrt {c} x}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}\right )+\text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}{\sqrt {b}+\sqrt {c} x}\right )}{\sqrt {2} \sqrt [4]{b} c^{3/4}} \] Input:

Integrate[x^(5/2)/(b*x^2 + c*x^4),x]
 

Output:

-((ArcTan[(Sqrt[b] - Sqrt[c]*x)/(Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x])] + ArcTa 
nh[(Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x])/(Sqrt[b] + Sqrt[c]*x)])/(Sqrt[2]*b^(1 
/4)*c^(3/4)))
 

Rubi [A] (verified)

Time = 0.65 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.56, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.526, Rules used = {9, 266, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{5/2}}{b x^2+c x^4} \, dx\)

\(\Big \downarrow \) 9

\(\displaystyle \int \frac {\sqrt {x}}{b+c x^2}dx\)

\(\Big \downarrow \) 266

\(\displaystyle 2 \int \frac {x}{c x^2+b}d\sqrt {x}\)

\(\Big \downarrow \) 826

\(\displaystyle 2 \left (\frac {\int \frac {\sqrt {c} x+\sqrt {b}}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}\right )\)

\(\Big \downarrow \) 1476

\(\displaystyle 2 \left (\frac {\frac {\int \frac {1}{x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {c}}+\frac {\int \frac {1}{x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}\right )\)

\(\Big \downarrow \) 1082

\(\displaystyle 2 \left (\frac {\frac {\int \frac {1}{-x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\int \frac {1}{-x-1}d\left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}\right )\)

\(\Big \downarrow \) 217

\(\displaystyle 2 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}\right )\)

\(\Big \downarrow \) 1479

\(\displaystyle 2 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{c} \left (x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}\right )}{\sqrt [4]{c} \left (x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle 2 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{c} \left (x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}\right )}{\sqrt [4]{c} \left (x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle 2 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt {c}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}}{x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt [4]{b} \sqrt {c}}}{2 \sqrt {c}}\right )\)

\(\Big \downarrow \) 1103

\(\displaystyle 2 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}\right )\)

Input:

Int[x^(5/2)/(b*x^2 + c*x^4),x]
 

Output:

2*((-(ArcTan[1 - (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)]/(Sqrt[2]*b^(1/4)*c^(1/ 
4))) + ArcTan[1 + (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)]/(Sqrt[2]*b^(1/4)*c^(1 
/4)))/(2*Sqrt[c]) - (-1/2*Log[Sqrt[b] - Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + 
Sqrt[c]*x]/(Sqrt[2]*b^(1/4)*c^(1/4)) + Log[Sqrt[b] + Sqrt[2]*b^(1/4)*c^(1/ 
4)*Sqrt[x] + Sqrt[c]*x]/(2*Sqrt[2]*b^(1/4)*c^(1/4)))/(2*Sqrt[c]))
 

Defintions of rubi rules used

rule 9
Int[(u_.)*(Px_)^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> With[{r = Expon[Px, 
x, Min]}, Simp[1/e^(p*r)   Int[u*(e*x)^(m + p*r)*ExpandToSum[Px/x^r, x]^p, 
x], x] /; IGtQ[r, 0]] /; FreeQ[{e, m}, x] && PolyQ[Px, x] && IntegerQ[p] && 
  !MonomialQ[Px, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [A] (verified)

Time = 0.10 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.77

method result size
derivativedivides \(\frac {\sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{4 c \left (\frac {b}{c}\right )^{\frac {1}{4}}}\) \(106\)
default \(\frac {\sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{4 c \left (\frac {b}{c}\right )^{\frac {1}{4}}}\) \(106\)

Input:

int(x^(5/2)/(c*x^4+b*x^2),x,method=_RETURNVERBOSE)
 

Output:

1/4/c/(1/c*b)^(1/4)*2^(1/2)*(ln((x-(1/c*b)^(1/4)*x^(1/2)*2^(1/2)+(1/c*b)^( 
1/2))/(x+(1/c*b)^(1/4)*x^(1/2)*2^(1/2)+(1/c*b)^(1/2)))+2*arctan(2^(1/2)/(1 
/c*b)^(1/4)*x^(1/2)+1)+2*arctan(2^(1/2)/(1/c*b)^(1/4)*x^(1/2)-1))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.14 (sec) , antiderivative size = 132, normalized size of antiderivative = 0.96 \[ \int \frac {x^{5/2}}{b x^2+c x^4} \, dx=\frac {1}{2} \, \left (-\frac {1}{b c^{3}}\right )^{\frac {1}{4}} \log \left (b c^{2} \left (-\frac {1}{b c^{3}}\right )^{\frac {3}{4}} + \sqrt {x}\right ) - \frac {1}{2} i \, \left (-\frac {1}{b c^{3}}\right )^{\frac {1}{4}} \log \left (i \, b c^{2} \left (-\frac {1}{b c^{3}}\right )^{\frac {3}{4}} + \sqrt {x}\right ) + \frac {1}{2} i \, \left (-\frac {1}{b c^{3}}\right )^{\frac {1}{4}} \log \left (-i \, b c^{2} \left (-\frac {1}{b c^{3}}\right )^{\frac {3}{4}} + \sqrt {x}\right ) - \frac {1}{2} \, \left (-\frac {1}{b c^{3}}\right )^{\frac {1}{4}} \log \left (-b c^{2} \left (-\frac {1}{b c^{3}}\right )^{\frac {3}{4}} + \sqrt {x}\right ) \] Input:

integrate(x^(5/2)/(c*x^4+b*x^2),x, algorithm="fricas")
 

Output:

1/2*(-1/(b*c^3))^(1/4)*log(b*c^2*(-1/(b*c^3))^(3/4) + sqrt(x)) - 1/2*I*(-1 
/(b*c^3))^(1/4)*log(I*b*c^2*(-1/(b*c^3))^(3/4) + sqrt(x)) + 1/2*I*(-1/(b*c 
^3))^(1/4)*log(-I*b*c^2*(-1/(b*c^3))^(3/4) + sqrt(x)) - 1/2*(-1/(b*c^3))^( 
1/4)*log(-b*c^2*(-1/(b*c^3))^(3/4) + sqrt(x))
 

Sympy [A] (verification not implemented)

Time = 26.32 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.76 \[ \int \frac {x^{5/2}}{b x^2+c x^4} \, dx=\begin {cases} \frac {\tilde {\infty }}{\sqrt {x}} & \text {for}\: b = 0 \wedge c = 0 \\\frac {2 x^{\frac {3}{2}}}{3 b} & \text {for}\: c = 0 \\- \frac {2}{c \sqrt {x}} & \text {for}\: b = 0 \\\frac {\log {\left (\sqrt {x} - \sqrt [4]{- \frac {b}{c}} \right )}}{2 c \sqrt [4]{- \frac {b}{c}}} - \frac {\log {\left (\sqrt {x} + \sqrt [4]{- \frac {b}{c}} \right )}}{2 c \sqrt [4]{- \frac {b}{c}}} + \frac {\operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {b}{c}}} \right )}}{c \sqrt [4]{- \frac {b}{c}}} & \text {otherwise} \end {cases} \] Input:

integrate(x**(5/2)/(c*x**4+b*x**2),x)
 

Output:

Piecewise((zoo/sqrt(x), Eq(b, 0) & Eq(c, 0)), (2*x**(3/2)/(3*b), Eq(c, 0)) 
, (-2/(c*sqrt(x)), Eq(b, 0)), (log(sqrt(x) - (-b/c)**(1/4))/(2*c*(-b/c)**( 
1/4)) - log(sqrt(x) + (-b/c)**(1/4))/(2*c*(-b/c)**(1/4)) + atan(sqrt(x)/(- 
b/c)**(1/4))/(c*(-b/c)**(1/4)), True))
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.26 \[ \int \frac {x^{5/2}}{b x^2+c x^4} \, dx=\frac {\sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} + 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{2 \, \sqrt {\sqrt {b} \sqrt {c}} \sqrt {c}} + \frac {\sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} - 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{2 \, \sqrt {\sqrt {b} \sqrt {c}} \sqrt {c}} - \frac {\sqrt {2} \log \left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{4 \, b^{\frac {1}{4}} c^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{4 \, b^{\frac {1}{4}} c^{\frac {3}{4}}} \] Input:

integrate(x^(5/2)/(c*x^4+b*x^2),x, algorithm="maxima")
 

Output:

1/2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*b^(1/4)*c^(1/4) + 2*sqrt(c)*sqrt(x 
))/sqrt(sqrt(b)*sqrt(c)))/(sqrt(sqrt(b)*sqrt(c))*sqrt(c)) + 1/2*sqrt(2)*ar 
ctan(-1/2*sqrt(2)*(sqrt(2)*b^(1/4)*c^(1/4) - 2*sqrt(c)*sqrt(x))/sqrt(sqrt( 
b)*sqrt(c)))/(sqrt(sqrt(b)*sqrt(c))*sqrt(c)) - 1/4*sqrt(2)*log(sqrt(2)*b^( 
1/4)*c^(1/4)*sqrt(x) + sqrt(c)*x + sqrt(b))/(b^(1/4)*c^(3/4)) + 1/4*sqrt(2 
)*log(-sqrt(2)*b^(1/4)*c^(1/4)*sqrt(x) + sqrt(c)*x + sqrt(b))/(b^(1/4)*c^( 
3/4))
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.33 \[ \int \frac {x^{5/2}}{b x^2+c x^4} \, dx=\frac {\sqrt {2} \left (b c^{3}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{2 \, b c^{3}} + \frac {\sqrt {2} \left (b c^{3}\right )^{\frac {3}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{2 \, b c^{3}} - \frac {\sqrt {2} \left (b c^{3}\right )^{\frac {3}{4}} \log \left (\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{4 \, b c^{3}} + \frac {\sqrt {2} \left (b c^{3}\right )^{\frac {3}{4}} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{4 \, b c^{3}} \] Input:

integrate(x^(5/2)/(c*x^4+b*x^2),x, algorithm="giac")
 

Output:

1/2*sqrt(2)*(b*c^3)^(3/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(b/c)^(1/4) + 2*sqrt 
(x))/(b/c)^(1/4))/(b*c^3) + 1/2*sqrt(2)*(b*c^3)^(3/4)*arctan(-1/2*sqrt(2)* 
(sqrt(2)*(b/c)^(1/4) - 2*sqrt(x))/(b/c)^(1/4))/(b*c^3) - 1/4*sqrt(2)*(b*c^ 
3)^(3/4)*log(sqrt(2)*sqrt(x)*(b/c)^(1/4) + x + sqrt(b/c))/(b*c^3) + 1/4*sq 
rt(2)*(b*c^3)^(3/4)*log(-sqrt(2)*sqrt(x)*(b/c)^(1/4) + x + sqrt(b/c))/(b*c 
^3)
                                                                                    
                                                                                    
 

Mupad [B] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 38, normalized size of antiderivative = 0.28 \[ \int \frac {x^{5/2}}{b x^2+c x^4} \, dx=\frac {\mathrm {atan}\left (\frac {c^{1/4}\,\sqrt {x}}{{\left (-b\right )}^{1/4}}\right )-\mathrm {atanh}\left (\frac {c^{1/4}\,\sqrt {x}}{{\left (-b\right )}^{1/4}}\right )}{{\left (-b\right )}^{1/4}\,c^{3/4}} \] Input:

int(x^(5/2)/(b*x^2 + c*x^4),x)
 

Output:

(atan((c^(1/4)*x^(1/2))/(-b)^(1/4)) - atanh((c^(1/4)*x^(1/2))/(-b)^(1/4))) 
/((-b)^(1/4)*c^(3/4))
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 112, normalized size of antiderivative = 0.82 \[ \int \frac {x^{5/2}}{b x^2+c x^4} \, dx=\frac {\sqrt {2}\, \left (-2 \mathit {atan} \left (\frac {c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}-2 \sqrt {x}\, \sqrt {c}}{c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}}\right )+2 \mathit {atan} \left (\frac {c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}+2 \sqrt {x}\, \sqrt {c}}{c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}}\right )+\mathrm {log}\left (-\sqrt {x}\, c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}+\sqrt {b}+\sqrt {c}\, x \right )-\mathrm {log}\left (\sqrt {x}\, c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}+\sqrt {b}+\sqrt {c}\, x \right )\right )}{4 c^{\frac {3}{4}} b^{\frac {1}{4}}} \] Input:

int(x^(5/2)/(c*x^4+b*x^2),x)
 

Output:

(c**(1/4)*b**(3/4)*sqrt(2)*( - 2*atan((c**(1/4)*b**(1/4)*sqrt(2) - 2*sqrt( 
x)*sqrt(c))/(c**(1/4)*b**(1/4)*sqrt(2))) + 2*atan((c**(1/4)*b**(1/4)*sqrt( 
2) + 2*sqrt(x)*sqrt(c))/(c**(1/4)*b**(1/4)*sqrt(2))) + log( - sqrt(x)*c**( 
1/4)*b**(1/4)*sqrt(2) + sqrt(b) + sqrt(c)*x) - log(sqrt(x)*c**(1/4)*b**(1/ 
4)*sqrt(2) + sqrt(b) + sqrt(c)*x)))/(4*b*c)