\(\int \frac {x^{23/2}}{(b x^2+c x^4)^3} \, dx\) [140]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 198 \[ \int \frac {x^{23/2}}{\left (b x^2+c x^4\right )^3} \, dx=\frac {45 \sqrt {x}}{16 c^3}-\frac {x^{9/2}}{4 c \left (b+c x^2\right )^2}-\frac {9 x^{5/2}}{16 c^2 \left (b+c x^2\right )}+\frac {45 \sqrt [4]{b} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{32 \sqrt {2} c^{13/4}}-\frac {45 \sqrt [4]{b} \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{32 \sqrt {2} c^{13/4}}-\frac {45 \sqrt [4]{b} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}{\sqrt {b}+\sqrt {c} x}\right )}{32 \sqrt {2} c^{13/4}} \] Output:

45/16*x^(1/2)/c^3-1/4*x^(9/2)/c/(c*x^2+b)^2-9/16*x^(5/2)/c^2/(c*x^2+b)+45/ 
64*b^(1/4)*arctan(1-2^(1/2)*c^(1/4)*x^(1/2)/b^(1/4))*2^(1/2)/c^(13/4)-45/6 
4*b^(1/4)*arctan(1+2^(1/2)*c^(1/4)*x^(1/2)/b^(1/4))*2^(1/2)/c^(13/4)-45/64 
*b^(1/4)*arctanh(2^(1/2)*b^(1/4)*c^(1/4)*x^(1/2)/(b^(1/2)+c^(1/2)*x))*2^(1 
/2)/c^(13/4)
 

Mathematica [A] (verified)

Time = 0.38 (sec) , antiderivative size = 149, normalized size of antiderivative = 0.75 \[ \int \frac {x^{23/2}}{\left (b x^2+c x^4\right )^3} \, dx=\frac {\frac {4 \sqrt [4]{c} \sqrt {x} \left (45 b^2+81 b c x^2+32 c^2 x^4\right )}{\left (b+c x^2\right )^2}+45 \sqrt {2} \sqrt [4]{b} \arctan \left (\frac {\sqrt {b}-\sqrt {c} x}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}\right )-45 \sqrt {2} \sqrt [4]{b} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}{\sqrt {b}+\sqrt {c} x}\right )}{64 c^{13/4}} \] Input:

Integrate[x^(23/2)/(b*x^2 + c*x^4)^3,x]
 

Output:

((4*c^(1/4)*Sqrt[x]*(45*b^2 + 81*b*c*x^2 + 32*c^2*x^4))/(b + c*x^2)^2 + 45 
*Sqrt[2]*b^(1/4)*ArcTan[(Sqrt[b] - Sqrt[c]*x)/(Sqrt[2]*b^(1/4)*c^(1/4)*Sqr 
t[x])] - 45*Sqrt[2]*b^(1/4)*ArcTanh[(Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x])/(Sqr 
t[b] + Sqrt[c]*x)])/(64*c^(13/4))
 

Rubi [A] (verified)

Time = 0.77 (sec) , antiderivative size = 287, normalized size of antiderivative = 1.45, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.684, Rules used = {9, 252, 252, 262, 266, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{23/2}}{\left (b x^2+c x^4\right )^3} \, dx\)

\(\Big \downarrow \) 9

\(\displaystyle \int \frac {x^{11/2}}{\left (b+c x^2\right )^3}dx\)

\(\Big \downarrow \) 252

\(\displaystyle \frac {9 \int \frac {x^{7/2}}{\left (c x^2+b\right )^2}dx}{8 c}-\frac {x^{9/2}}{4 c \left (b+c x^2\right )^2}\)

\(\Big \downarrow \) 252

\(\displaystyle \frac {9 \left (\frac {5 \int \frac {x^{3/2}}{c x^2+b}dx}{4 c}-\frac {x^{5/2}}{2 c \left (b+c x^2\right )}\right )}{8 c}-\frac {x^{9/2}}{4 c \left (b+c x^2\right )^2}\)

\(\Big \downarrow \) 262

\(\displaystyle \frac {9 \left (\frac {5 \left (\frac {2 \sqrt {x}}{c}-\frac {b \int \frac {1}{\sqrt {x} \left (c x^2+b\right )}dx}{c}\right )}{4 c}-\frac {x^{5/2}}{2 c \left (b+c x^2\right )}\right )}{8 c}-\frac {x^{9/2}}{4 c \left (b+c x^2\right )^2}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {9 \left (\frac {5 \left (\frac {2 \sqrt {x}}{c}-\frac {2 b \int \frac {1}{c x^2+b}d\sqrt {x}}{c}\right )}{4 c}-\frac {x^{5/2}}{2 c \left (b+c x^2\right )}\right )}{8 c}-\frac {x^{9/2}}{4 c \left (b+c x^2\right )^2}\)

\(\Big \downarrow \) 755

\(\displaystyle \frac {9 \left (\frac {5 \left (\frac {2 \sqrt {x}}{c}-\frac {2 b \left (\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {b}}+\frac {\int \frac {\sqrt {c} x+\sqrt {b}}{c x^2+b}d\sqrt {x}}{2 \sqrt {b}}\right )}{c}\right )}{4 c}-\frac {x^{5/2}}{2 c \left (b+c x^2\right )}\right )}{8 c}-\frac {x^{9/2}}{4 c \left (b+c x^2\right )^2}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {9 \left (\frac {5 \left (\frac {2 \sqrt {x}}{c}-\frac {2 b \left (\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {b}}+\frac {\frac {\int \frac {1}{x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {c}}+\frac {\int \frac {1}{x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {c}}}{2 \sqrt {b}}\right )}{c}\right )}{4 c}-\frac {x^{5/2}}{2 c \left (b+c x^2\right )}\right )}{8 c}-\frac {x^{9/2}}{4 c \left (b+c x^2\right )^2}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {9 \left (\frac {5 \left (\frac {2 \sqrt {x}}{c}-\frac {2 b \left (\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {b}}+\frac {\frac {\int \frac {1}{-x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\int \frac {1}{-x-1}d\left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}\right )}{c}\right )}{4 c}-\frac {x^{5/2}}{2 c \left (b+c x^2\right )}\right )}{8 c}-\frac {x^{9/2}}{4 c \left (b+c x^2\right )^2}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {9 \left (\frac {5 \left (\frac {2 \sqrt {x}}{c}-\frac {2 b \left (\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {b}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}\right )}{c}\right )}{4 c}-\frac {x^{5/2}}{2 c \left (b+c x^2\right )}\right )}{8 c}-\frac {x^{9/2}}{4 c \left (b+c x^2\right )^2}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {9 \left (\frac {5 \left (\frac {2 \sqrt {x}}{c}-\frac {2 b \left (\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{c} \left (x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}\right )}{\sqrt [4]{c} \left (x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}\right )}{c}\right )}{4 c}-\frac {x^{5/2}}{2 c \left (b+c x^2\right )}\right )}{8 c}-\frac {x^{9/2}}{4 c \left (b+c x^2\right )^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {9 \left (\frac {5 \left (\frac {2 \sqrt {x}}{c}-\frac {2 b \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{c} \left (x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}\right )}{\sqrt [4]{c} \left (x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}\right )}{c}\right )}{4 c}-\frac {x^{5/2}}{2 c \left (b+c x^2\right )}\right )}{8 c}-\frac {x^{9/2}}{4 c \left (b+c x^2\right )^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {9 \left (\frac {5 \left (\frac {2 \sqrt {x}}{c}-\frac {2 b \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt {c}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}}{x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt [4]{b} \sqrt {c}}}{2 \sqrt {b}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}\right )}{c}\right )}{4 c}-\frac {x^{5/2}}{2 c \left (b+c x^2\right )}\right )}{8 c}-\frac {x^{9/2}}{4 c \left (b+c x^2\right )^2}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {9 \left (\frac {5 \left (\frac {2 \sqrt {x}}{c}-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}+\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}\right )}{c}\right )}{4 c}-\frac {x^{5/2}}{2 c \left (b+c x^2\right )}\right )}{8 c}-\frac {x^{9/2}}{4 c \left (b+c x^2\right )^2}\)

Input:

Int[x^(23/2)/(b*x^2 + c*x^4)^3,x]
 

Output:

-1/4*x^(9/2)/(c*(b + c*x^2)^2) + (9*(-1/2*x^(5/2)/(c*(b + c*x^2)) + (5*((2 
*Sqrt[x])/c - (2*b*((-(ArcTan[1 - (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)]/(Sqrt 
[2]*b^(1/4)*c^(1/4))) + ArcTan[1 + (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)]/(Sqr 
t[2]*b^(1/4)*c^(1/4)))/(2*Sqrt[b]) + (-1/2*Log[Sqrt[b] - Sqrt[2]*b^(1/4)*c 
^(1/4)*Sqrt[x] + Sqrt[c]*x]/(Sqrt[2]*b^(1/4)*c^(1/4)) + Log[Sqrt[b] + Sqrt 
[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x]/(2*Sqrt[2]*b^(1/4)*c^(1/4)))/(2*S 
qrt[b])))/c))/(4*c)))/(8*c)
 

Defintions of rubi rules used

rule 9
Int[(u_.)*(Px_)^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> With[{r = Expon[Px, 
x, Min]}, Simp[1/e^(p*r)   Int[u*(e*x)^(m + p*r)*ExpandToSum[Px/x^r, x]^p, 
x], x] /; IGtQ[r, 0]] /; FreeQ[{e, m}, x] && PolyQ[Px, x] && IntegerQ[p] && 
  !MonomialQ[Px, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 252
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x 
)^(m - 1)*((a + b*x^2)^(p + 1)/(2*b*(p + 1))), x] - Simp[c^2*((m - 1)/(2*b* 
(p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c 
}, x] && LtQ[p, -1] && GtQ[m, 1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomi 
alQ[a, b, c, 2, m, p, x]
 

rule 262
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x) 
^(m - 1)*((a + b*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] - Simp[a*c^2*((m - 1)/ 
(b*(m + 2*p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b 
, c, p}, x] && GtQ[m, 2 - 1] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c 
, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [A] (verified)

Time = 0.28 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.73

method result size
derivativedivides \(\frac {2 \sqrt {x}}{c^{3}}-\frac {2 b \left (\frac {-\frac {17 c \,x^{\frac {5}{2}}}{32}-\frac {13 b \sqrt {x}}{32}}{\left (c \,x^{2}+b \right )^{2}}+\frac {45 \left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{256 b}\right )}{c^{3}}\) \(145\)
default \(\frac {2 \sqrt {x}}{c^{3}}-\frac {2 b \left (\frac {-\frac {17 c \,x^{\frac {5}{2}}}{32}-\frac {13 b \sqrt {x}}{32}}{\left (c \,x^{2}+b \right )^{2}}+\frac {45 \left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{256 b}\right )}{c^{3}}\) \(145\)
risch \(\frac {2 \sqrt {x}}{c^{3}}-\frac {b \left (\frac {-\frac {17 c \,x^{\frac {5}{2}}}{16}-\frac {13 b \sqrt {x}}{16}}{\left (c \,x^{2}+b \right )^{2}}+\frac {45 \left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{128 b}\right )}{c^{3}}\) \(146\)

Input:

int(x^(23/2)/(c*x^4+b*x^2)^3,x,method=_RETURNVERBOSE)
 

Output:

2*x^(1/2)/c^3-2/c^3*b*((-17/32*c*x^(5/2)-13/32*b*x^(1/2))/(c*x^2+b)^2+45/2 
56*(1/c*b)^(1/4)/b*2^(1/2)*(ln((x+(1/c*b)^(1/4)*x^(1/2)*2^(1/2)+(1/c*b)^(1 
/2))/(x-(1/c*b)^(1/4)*x^(1/2)*2^(1/2)+(1/c*b)^(1/2)))+2*arctan(2^(1/2)/(1/ 
c*b)^(1/4)*x^(1/2)+1)+2*arctan(2^(1/2)/(1/c*b)^(1/4)*x^(1/2)-1)))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.12 (sec) , antiderivative size = 275, normalized size of antiderivative = 1.39 \[ \int \frac {x^{23/2}}{\left (b x^2+c x^4\right )^3} \, dx=-\frac {45 \, {\left (c^{5} x^{4} + 2 \, b c^{4} x^{2} + b^{2} c^{3}\right )} \left (-\frac {b}{c^{13}}\right )^{\frac {1}{4}} \log \left (45 \, c^{3} \left (-\frac {b}{c^{13}}\right )^{\frac {1}{4}} + 45 \, \sqrt {x}\right ) + 45 \, {\left (i \, c^{5} x^{4} + 2 i \, b c^{4} x^{2} + i \, b^{2} c^{3}\right )} \left (-\frac {b}{c^{13}}\right )^{\frac {1}{4}} \log \left (45 i \, c^{3} \left (-\frac {b}{c^{13}}\right )^{\frac {1}{4}} + 45 \, \sqrt {x}\right ) + 45 \, {\left (-i \, c^{5} x^{4} - 2 i \, b c^{4} x^{2} - i \, b^{2} c^{3}\right )} \left (-\frac {b}{c^{13}}\right )^{\frac {1}{4}} \log \left (-45 i \, c^{3} \left (-\frac {b}{c^{13}}\right )^{\frac {1}{4}} + 45 \, \sqrt {x}\right ) - 45 \, {\left (c^{5} x^{4} + 2 \, b c^{4} x^{2} + b^{2} c^{3}\right )} \left (-\frac {b}{c^{13}}\right )^{\frac {1}{4}} \log \left (-45 \, c^{3} \left (-\frac {b}{c^{13}}\right )^{\frac {1}{4}} + 45 \, \sqrt {x}\right ) - 4 \, {\left (32 \, c^{2} x^{4} + 81 \, b c x^{2} + 45 \, b^{2}\right )} \sqrt {x}}{64 \, {\left (c^{5} x^{4} + 2 \, b c^{4} x^{2} + b^{2} c^{3}\right )}} \] Input:

integrate(x^(23/2)/(c*x^4+b*x^2)^3,x, algorithm="fricas")
 

Output:

-1/64*(45*(c^5*x^4 + 2*b*c^4*x^2 + b^2*c^3)*(-b/c^13)^(1/4)*log(45*c^3*(-b 
/c^13)^(1/4) + 45*sqrt(x)) + 45*(I*c^5*x^4 + 2*I*b*c^4*x^2 + I*b^2*c^3)*(- 
b/c^13)^(1/4)*log(45*I*c^3*(-b/c^13)^(1/4) + 45*sqrt(x)) + 45*(-I*c^5*x^4 
- 2*I*b*c^4*x^2 - I*b^2*c^3)*(-b/c^13)^(1/4)*log(-45*I*c^3*(-b/c^13)^(1/4) 
 + 45*sqrt(x)) - 45*(c^5*x^4 + 2*b*c^4*x^2 + b^2*c^3)*(-b/c^13)^(1/4)*log( 
-45*c^3*(-b/c^13)^(1/4) + 45*sqrt(x)) - 4*(32*c^2*x^4 + 81*b*c*x^2 + 45*b^ 
2)*sqrt(x))/(c^5*x^4 + 2*b*c^4*x^2 + b^2*c^3)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {x^{23/2}}{\left (b x^2+c x^4\right )^3} \, dx=\text {Timed out} \] Input:

integrate(x**(23/2)/(c*x**4+b*x**2)**3,x)
 

Output:

Timed out
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.16 \[ \int \frac {x^{23/2}}{\left (b x^2+c x^4\right )^3} \, dx=\frac {17 \, b c x^{\frac {5}{2}} + 13 \, b^{2} \sqrt {x}}{16 \, {\left (c^{5} x^{4} + 2 \, b c^{4} x^{2} + b^{2} c^{3}\right )}} - \frac {45 \, {\left (\frac {2 \, \sqrt {2} \sqrt {b} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} + 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{\sqrt {\sqrt {b} \sqrt {c}}} + \frac {2 \, \sqrt {2} \sqrt {b} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} - 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{\sqrt {\sqrt {b} \sqrt {c}}} + \frac {\sqrt {2} b^{\frac {1}{4}} \log \left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{c^{\frac {1}{4}}} - \frac {\sqrt {2} b^{\frac {1}{4}} \log \left (-\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{c^{\frac {1}{4}}}\right )}}{128 \, c^{3}} + \frac {2 \, \sqrt {x}}{c^{3}} \] Input:

integrate(x^(23/2)/(c*x^4+b*x^2)^3,x, algorithm="maxima")
 

Output:

1/16*(17*b*c*x^(5/2) + 13*b^2*sqrt(x))/(c^5*x^4 + 2*b*c^4*x^2 + b^2*c^3) - 
 45/128*(2*sqrt(2)*sqrt(b)*arctan(1/2*sqrt(2)*(sqrt(2)*b^(1/4)*c^(1/4) + 2 
*sqrt(c)*sqrt(x))/sqrt(sqrt(b)*sqrt(c)))/sqrt(sqrt(b)*sqrt(c)) + 2*sqrt(2) 
*sqrt(b)*arctan(-1/2*sqrt(2)*(sqrt(2)*b^(1/4)*c^(1/4) - 2*sqrt(c)*sqrt(x)) 
/sqrt(sqrt(b)*sqrt(c)))/sqrt(sqrt(b)*sqrt(c)) + sqrt(2)*b^(1/4)*log(sqrt(2 
)*b^(1/4)*c^(1/4)*sqrt(x) + sqrt(c)*x + sqrt(b))/c^(1/4) - sqrt(2)*b^(1/4) 
*log(-sqrt(2)*b^(1/4)*c^(1/4)*sqrt(x) + sqrt(c)*x + sqrt(b))/c^(1/4))/c^3 
+ 2*sqrt(x)/c^3
 

Giac [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.05 \[ \int \frac {x^{23/2}}{\left (b x^2+c x^4\right )^3} \, dx=-\frac {45 \, \sqrt {2} \left (b c^{3}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{64 \, c^{4}} - \frac {45 \, \sqrt {2} \left (b c^{3}\right )^{\frac {1}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{64 \, c^{4}} - \frac {45 \, \sqrt {2} \left (b c^{3}\right )^{\frac {1}{4}} \log \left (\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{128 \, c^{4}} + \frac {45 \, \sqrt {2} \left (b c^{3}\right )^{\frac {1}{4}} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{128 \, c^{4}} + \frac {2 \, \sqrt {x}}{c^{3}} + \frac {17 \, b c x^{\frac {5}{2}} + 13 \, b^{2} \sqrt {x}}{16 \, {\left (c x^{2} + b\right )}^{2} c^{3}} \] Input:

integrate(x^(23/2)/(c*x^4+b*x^2)^3,x, algorithm="giac")
 

Output:

-45/64*sqrt(2)*(b*c^3)^(1/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(b/c)^(1/4) + 2*s 
qrt(x))/(b/c)^(1/4))/c^4 - 45/64*sqrt(2)*(b*c^3)^(1/4)*arctan(-1/2*sqrt(2) 
*(sqrt(2)*(b/c)^(1/4) - 2*sqrt(x))/(b/c)^(1/4))/c^4 - 45/128*sqrt(2)*(b*c^ 
3)^(1/4)*log(sqrt(2)*sqrt(x)*(b/c)^(1/4) + x + sqrt(b/c))/c^4 + 45/128*sqr 
t(2)*(b*c^3)^(1/4)*log(-sqrt(2)*sqrt(x)*(b/c)^(1/4) + x + sqrt(b/c))/c^4 + 
 2*sqrt(x)/c^3 + 1/16*(17*b*c*x^(5/2) + 13*b^2*sqrt(x))/((c*x^2 + b)^2*c^3 
)
 

Mupad [B] (verification not implemented)

Time = 17.67 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.51 \[ \int \frac {x^{23/2}}{\left (b x^2+c x^4\right )^3} \, dx=\frac {\frac {13\,b^2\,\sqrt {x}}{16}+\frac {17\,b\,c\,x^{5/2}}{16}}{b^2\,c^3+2\,b\,c^4\,x^2+c^5\,x^4}+\frac {2\,\sqrt {x}}{c^3}-\frac {45\,{\left (-b\right )}^{1/4}\,\mathrm {atan}\left (\frac {c^{1/4}\,\sqrt {x}}{{\left (-b\right )}^{1/4}}\right )}{32\,c^{13/4}}+\frac {{\left (-b\right )}^{1/4}\,\mathrm {atan}\left (\frac {c^{1/4}\,\sqrt {x}\,1{}\mathrm {i}}{{\left (-b\right )}^{1/4}}\right )\,45{}\mathrm {i}}{32\,c^{13/4}} \] Input:

int(x^(23/2)/(b*x^2 + c*x^4)^3,x)
 

Output:

((13*b^2*x^(1/2))/16 + (17*b*c*x^(5/2))/16)/(b^2*c^3 + c^5*x^4 + 2*b*c^4*x 
^2) + (2*x^(1/2))/c^3 - (45*(-b)^(1/4)*atan((c^(1/4)*x^(1/2))/(-b)^(1/4))) 
/(32*c^(13/4)) + ((-b)^(1/4)*atan((c^(1/4)*x^(1/2)*1i)/(-b)^(1/4))*45i)/(3 
2*c^(13/4))
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 484, normalized size of antiderivative = 2.44 \[ \int \frac {x^{23/2}}{\left (b x^2+c x^4\right )^3} \, dx =\text {Too large to display} \] Input:

int(x^(23/2)/(c*x^4+b*x^2)^3,x)
 

Output:

(90*c**(3/4)*b**(1/4)*sqrt(2)*atan((c**(1/4)*b**(1/4)*sqrt(2) - 2*sqrt(x)* 
sqrt(c))/(c**(1/4)*b**(1/4)*sqrt(2)))*b**2 + 180*c**(3/4)*b**(1/4)*sqrt(2) 
*atan((c**(1/4)*b**(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(c))/(c**(1/4)*b**(1/4)*s 
qrt(2)))*b*c*x**2 + 90*c**(3/4)*b**(1/4)*sqrt(2)*atan((c**(1/4)*b**(1/4)*s 
qrt(2) - 2*sqrt(x)*sqrt(c))/(c**(1/4)*b**(1/4)*sqrt(2)))*c**2*x**4 - 90*c* 
*(3/4)*b**(1/4)*sqrt(2)*atan((c**(1/4)*b**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(c 
))/(c**(1/4)*b**(1/4)*sqrt(2)))*b**2 - 180*c**(3/4)*b**(1/4)*sqrt(2)*atan( 
(c**(1/4)*b**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(c))/(c**(1/4)*b**(1/4)*sqrt(2) 
))*b*c*x**2 - 90*c**(3/4)*b**(1/4)*sqrt(2)*atan((c**(1/4)*b**(1/4)*sqrt(2) 
 + 2*sqrt(x)*sqrt(c))/(c**(1/4)*b**(1/4)*sqrt(2)))*c**2*x**4 + 45*c**(3/4) 
*b**(1/4)*sqrt(2)*log( - sqrt(x)*c**(1/4)*b**(1/4)*sqrt(2) + sqrt(b) + sqr 
t(c)*x)*b**2 + 90*c**(3/4)*b**(1/4)*sqrt(2)*log( - sqrt(x)*c**(1/4)*b**(1/ 
4)*sqrt(2) + sqrt(b) + sqrt(c)*x)*b*c*x**2 + 45*c**(3/4)*b**(1/4)*sqrt(2)* 
log( - sqrt(x)*c**(1/4)*b**(1/4)*sqrt(2) + sqrt(b) + sqrt(c)*x)*c**2*x**4 
- 45*c**(3/4)*b**(1/4)*sqrt(2)*log(sqrt(x)*c**(1/4)*b**(1/4)*sqrt(2) + sqr 
t(b) + sqrt(c)*x)*b**2 - 90*c**(3/4)*b**(1/4)*sqrt(2)*log(sqrt(x)*c**(1/4) 
*b**(1/4)*sqrt(2) + sqrt(b) + sqrt(c)*x)*b*c*x**2 - 45*c**(3/4)*b**(1/4)*s 
qrt(2)*log(sqrt(x)*c**(1/4)*b**(1/4)*sqrt(2) + sqrt(b) + sqrt(c)*x)*c**2*x 
**4 + 360*sqrt(x)*b**2*c + 648*sqrt(x)*b*c**2*x**2 + 256*sqrt(x)*c**3*x**4 
)/(128*c**4*(b**2 + 2*b*c*x**2 + c**2*x**4))