\(\int \frac {x^{9/2}}{(b x^2+c x^4)^3} \, dx\) [147]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 198 \[ \int \frac {x^{9/2}}{\left (b x^2+c x^4\right )^3} \, dx=-\frac {45}{16 b^3 \sqrt {x}}+\frac {1}{4 b \sqrt {x} \left (b+c x^2\right )^2}+\frac {9}{16 b^2 \sqrt {x} \left (b+c x^2\right )}+\frac {45 \sqrt [4]{c} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{32 \sqrt {2} b^{13/4}}-\frac {45 \sqrt [4]{c} \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{32 \sqrt {2} b^{13/4}}+\frac {45 \sqrt [4]{c} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}{\sqrt {b}+\sqrt {c} x}\right )}{32 \sqrt {2} b^{13/4}} \] Output:

-45/16/b^3/x^(1/2)+1/4/b/x^(1/2)/(c*x^2+b)^2+9/16/b^2/x^(1/2)/(c*x^2+b)+45 
/64*c^(1/4)*arctan(1-2^(1/2)*c^(1/4)*x^(1/2)/b^(1/4))*2^(1/2)/b^(13/4)-45/ 
64*c^(1/4)*arctan(1+2^(1/2)*c^(1/4)*x^(1/2)/b^(1/4))*2^(1/2)/b^(13/4)+45/6 
4*c^(1/4)*arctanh(2^(1/2)*b^(1/4)*c^(1/4)*x^(1/2)/(b^(1/2)+c^(1/2)*x))*2^( 
1/2)/b^(13/4)
 

Mathematica [A] (verified)

Time = 0.39 (sec) , antiderivative size = 149, normalized size of antiderivative = 0.75 \[ \int \frac {x^{9/2}}{\left (b x^2+c x^4\right )^3} \, dx=\frac {-\frac {4 \sqrt [4]{b} \left (32 b^2+81 b c x^2+45 c^2 x^4\right )}{\sqrt {x} \left (b+c x^2\right )^2}+45 \sqrt {2} \sqrt [4]{c} \arctan \left (\frac {\sqrt {b}-\sqrt {c} x}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}\right )+45 \sqrt {2} \sqrt [4]{c} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}{\sqrt {b}+\sqrt {c} x}\right )}{64 b^{13/4}} \] Input:

Integrate[x^(9/2)/(b*x^2 + c*x^4)^3,x]
 

Output:

((-4*b^(1/4)*(32*b^2 + 81*b*c*x^2 + 45*c^2*x^4))/(Sqrt[x]*(b + c*x^2)^2) + 
 45*Sqrt[2]*c^(1/4)*ArcTan[(Sqrt[b] - Sqrt[c]*x)/(Sqrt[2]*b^(1/4)*c^(1/4)* 
Sqrt[x])] + 45*Sqrt[2]*c^(1/4)*ArcTanh[(Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x])/( 
Sqrt[b] + Sqrt[c]*x)])/(64*b^(13/4))
 

Rubi [A] (verified)

Time = 0.78 (sec) , antiderivative size = 287, normalized size of antiderivative = 1.45, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.684, Rules used = {9, 253, 253, 264, 266, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{9/2}}{\left (b x^2+c x^4\right )^3} \, dx\)

\(\Big \downarrow \) 9

\(\displaystyle \int \frac {1}{x^{3/2} \left (b+c x^2\right )^3}dx\)

\(\Big \downarrow \) 253

\(\displaystyle \frac {9 \int \frac {1}{x^{3/2} \left (c x^2+b\right )^2}dx}{8 b}+\frac {1}{4 b \sqrt {x} \left (b+c x^2\right )^2}\)

\(\Big \downarrow \) 253

\(\displaystyle \frac {9 \left (\frac {5 \int \frac {1}{x^{3/2} \left (c x^2+b\right )}dx}{4 b}+\frac {1}{2 b \sqrt {x} \left (b+c x^2\right )}\right )}{8 b}+\frac {1}{4 b \sqrt {x} \left (b+c x^2\right )^2}\)

\(\Big \downarrow \) 264

\(\displaystyle \frac {9 \left (\frac {5 \left (-\frac {c \int \frac {\sqrt {x}}{c x^2+b}dx}{b}-\frac {2}{b \sqrt {x}}\right )}{4 b}+\frac {1}{2 b \sqrt {x} \left (b+c x^2\right )}\right )}{8 b}+\frac {1}{4 b \sqrt {x} \left (b+c x^2\right )^2}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {9 \left (\frac {5 \left (-\frac {2 c \int \frac {x}{c x^2+b}d\sqrt {x}}{b}-\frac {2}{b \sqrt {x}}\right )}{4 b}+\frac {1}{2 b \sqrt {x} \left (b+c x^2\right )}\right )}{8 b}+\frac {1}{4 b \sqrt {x} \left (b+c x^2\right )^2}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {9 \left (\frac {5 \left (-\frac {2 c \left (\frac {\int \frac {\sqrt {c} x+\sqrt {b}}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}\right )}{b}-\frac {2}{b \sqrt {x}}\right )}{4 b}+\frac {1}{2 b \sqrt {x} \left (b+c x^2\right )}\right )}{8 b}+\frac {1}{4 b \sqrt {x} \left (b+c x^2\right )^2}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {9 \left (\frac {5 \left (-\frac {2 c \left (\frac {\frac {\int \frac {1}{x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {c}}+\frac {\int \frac {1}{x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}\right )}{b}-\frac {2}{b \sqrt {x}}\right )}{4 b}+\frac {1}{2 b \sqrt {x} \left (b+c x^2\right )}\right )}{8 b}+\frac {1}{4 b \sqrt {x} \left (b+c x^2\right )^2}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {9 \left (\frac {5 \left (-\frac {2 c \left (\frac {\frac {\int \frac {1}{-x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\int \frac {1}{-x-1}d\left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}\right )}{b}-\frac {2}{b \sqrt {x}}\right )}{4 b}+\frac {1}{2 b \sqrt {x} \left (b+c x^2\right )}\right )}{8 b}+\frac {1}{4 b \sqrt {x} \left (b+c x^2\right )^2}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {9 \left (\frac {5 \left (-\frac {2 c \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}\right )}{b}-\frac {2}{b \sqrt {x}}\right )}{4 b}+\frac {1}{2 b \sqrt {x} \left (b+c x^2\right )}\right )}{8 b}+\frac {1}{4 b \sqrt {x} \left (b+c x^2\right )^2}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {9 \left (\frac {5 \left (-\frac {2 c \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{c} \left (x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}\right )}{\sqrt [4]{c} \left (x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}\right )}{b}-\frac {2}{b \sqrt {x}}\right )}{4 b}+\frac {1}{2 b \sqrt {x} \left (b+c x^2\right )}\right )}{8 b}+\frac {1}{4 b \sqrt {x} \left (b+c x^2\right )^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {9 \left (\frac {5 \left (-\frac {2 c \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{c} \left (x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}\right )}{\sqrt [4]{c} \left (x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}\right )}{b}-\frac {2}{b \sqrt {x}}\right )}{4 b}+\frac {1}{2 b \sqrt {x} \left (b+c x^2\right )}\right )}{8 b}+\frac {1}{4 b \sqrt {x} \left (b+c x^2\right )^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {9 \left (\frac {5 \left (-\frac {2 c \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt {c}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}}{x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt [4]{b} \sqrt {c}}}{2 \sqrt {c}}\right )}{b}-\frac {2}{b \sqrt {x}}\right )}{4 b}+\frac {1}{2 b \sqrt {x} \left (b+c x^2\right )}\right )}{8 b}+\frac {1}{4 b \sqrt {x} \left (b+c x^2\right )^2}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {9 \left (\frac {5 \left (-\frac {2 c \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}\right )}{b}-\frac {2}{b \sqrt {x}}\right )}{4 b}+\frac {1}{2 b \sqrt {x} \left (b+c x^2\right )}\right )}{8 b}+\frac {1}{4 b \sqrt {x} \left (b+c x^2\right )^2}\)

Input:

Int[x^(9/2)/(b*x^2 + c*x^4)^3,x]
 

Output:

1/(4*b*Sqrt[x]*(b + c*x^2)^2) + (9*(1/(2*b*Sqrt[x]*(b + c*x^2)) + (5*(-2/( 
b*Sqrt[x]) - (2*c*((-(ArcTan[1 - (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)]/(Sqrt[ 
2]*b^(1/4)*c^(1/4))) + ArcTan[1 + (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)]/(Sqrt 
[2]*b^(1/4)*c^(1/4)))/(2*Sqrt[c]) - (-1/2*Log[Sqrt[b] - Sqrt[2]*b^(1/4)*c^ 
(1/4)*Sqrt[x] + Sqrt[c]*x]/(Sqrt[2]*b^(1/4)*c^(1/4)) + Log[Sqrt[b] + Sqrt[ 
2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x]/(2*Sqrt[2]*b^(1/4)*c^(1/4)))/(2*Sq 
rt[c])))/b))/(4*b)))/(8*b)
 

Defintions of rubi rules used

rule 9
Int[(u_.)*(Px_)^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> With[{r = Expon[Px, 
x, Min]}, Simp[1/e^(p*r)   Int[u*(e*x)^(m + p*r)*ExpandToSum[Px/x^r, x]^p, 
x], x] /; IGtQ[r, 0]] /; FreeQ[{e, m}, x] && PolyQ[Px, x] && IntegerQ[p] && 
  !MonomialQ[Px, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 253
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(c*x 
)^(m + 1))*((a + b*x^2)^(p + 1)/(2*a*c*(p + 1))), x] + Simp[(m + 2*p + 3)/( 
2*a*(p + 1))   Int[(c*x)^m*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, m 
}, x] && LtQ[p, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 264
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^( 
m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + 2*p + 3)/(a*c 
^2*(m + 1)))   Int[(c*x)^(m + 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, p 
}, x] && LtQ[m, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [A] (verified)

Time = 0.22 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.73

method result size
derivativedivides \(-\frac {2}{b^{3} \sqrt {x}}-\frac {2 c \left (\frac {\frac {13 c \,x^{\frac {7}{2}}}{32}+\frac {17 b \,x^{\frac {3}{2}}}{32}}{\left (c \,x^{2}+b \right )^{2}}+\frac {45 \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{256 c \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{b^{3}}\) \(145\)
default \(-\frac {2}{b^{3} \sqrt {x}}-\frac {2 c \left (\frac {\frac {13 c \,x^{\frac {7}{2}}}{32}+\frac {17 b \,x^{\frac {3}{2}}}{32}}{\left (c \,x^{2}+b \right )^{2}}+\frac {45 \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{256 c \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{b^{3}}\) \(145\)
risch \(-\frac {2}{b^{3} \sqrt {x}}-\frac {c \left (\frac {\frac {13 c \,x^{\frac {7}{2}}}{16}+\frac {17 b \,x^{\frac {3}{2}}}{16}}{\left (c \,x^{2}+b \right )^{2}}+\frac {45 \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{128 c \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{b^{3}}\) \(146\)

Input:

int(x^(9/2)/(c*x^4+b*x^2)^3,x,method=_RETURNVERBOSE)
 

Output:

-2/b^3/x^(1/2)-2/b^3*c*((13/32*c*x^(7/2)+17/32*b*x^(3/2))/(c*x^2+b)^2+45/2 
56/c/(1/c*b)^(1/4)*2^(1/2)*(ln((x-(1/c*b)^(1/4)*x^(1/2)*2^(1/2)+(1/c*b)^(1 
/2))/(x+(1/c*b)^(1/4)*x^(1/2)*2^(1/2)+(1/c*b)^(1/2)))+2*arctan(2^(1/2)/(1/ 
c*b)^(1/4)*x^(1/2)+1)+2*arctan(2^(1/2)/(1/c*b)^(1/4)*x^(1/2)-1)))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.13 (sec) , antiderivative size = 284, normalized size of antiderivative = 1.43 \[ \int \frac {x^{9/2}}{\left (b x^2+c x^4\right )^3} \, dx=-\frac {45 \, {\left (b^{3} c^{2} x^{5} + 2 \, b^{4} c x^{3} + b^{5} x\right )} \left (-\frac {c}{b^{13}}\right )^{\frac {1}{4}} \log \left (91125 \, b^{10} \left (-\frac {c}{b^{13}}\right )^{\frac {3}{4}} + 91125 \, c \sqrt {x}\right ) + 45 \, {\left (-i \, b^{3} c^{2} x^{5} - 2 i \, b^{4} c x^{3} - i \, b^{5} x\right )} \left (-\frac {c}{b^{13}}\right )^{\frac {1}{4}} \log \left (91125 i \, b^{10} \left (-\frac {c}{b^{13}}\right )^{\frac {3}{4}} + 91125 \, c \sqrt {x}\right ) + 45 \, {\left (i \, b^{3} c^{2} x^{5} + 2 i \, b^{4} c x^{3} + i \, b^{5} x\right )} \left (-\frac {c}{b^{13}}\right )^{\frac {1}{4}} \log \left (-91125 i \, b^{10} \left (-\frac {c}{b^{13}}\right )^{\frac {3}{4}} + 91125 \, c \sqrt {x}\right ) - 45 \, {\left (b^{3} c^{2} x^{5} + 2 \, b^{4} c x^{3} + b^{5} x\right )} \left (-\frac {c}{b^{13}}\right )^{\frac {1}{4}} \log \left (-91125 \, b^{10} \left (-\frac {c}{b^{13}}\right )^{\frac {3}{4}} + 91125 \, c \sqrt {x}\right ) + 4 \, {\left (45 \, c^{2} x^{4} + 81 \, b c x^{2} + 32 \, b^{2}\right )} \sqrt {x}}{64 \, {\left (b^{3} c^{2} x^{5} + 2 \, b^{4} c x^{3} + b^{5} x\right )}} \] Input:

integrate(x^(9/2)/(c*x^4+b*x^2)^3,x, algorithm="fricas")
 

Output:

-1/64*(45*(b^3*c^2*x^5 + 2*b^4*c*x^3 + b^5*x)*(-c/b^13)^(1/4)*log(91125*b^ 
10*(-c/b^13)^(3/4) + 91125*c*sqrt(x)) + 45*(-I*b^3*c^2*x^5 - 2*I*b^4*c*x^3 
 - I*b^5*x)*(-c/b^13)^(1/4)*log(91125*I*b^10*(-c/b^13)^(3/4) + 91125*c*sqr 
t(x)) + 45*(I*b^3*c^2*x^5 + 2*I*b^4*c*x^3 + I*b^5*x)*(-c/b^13)^(1/4)*log(- 
91125*I*b^10*(-c/b^13)^(3/4) + 91125*c*sqrt(x)) - 45*(b^3*c^2*x^5 + 2*b^4* 
c*x^3 + b^5*x)*(-c/b^13)^(1/4)*log(-91125*b^10*(-c/b^13)^(3/4) + 91125*c*s 
qrt(x)) + 4*(45*c^2*x^4 + 81*b*c*x^2 + 32*b^2)*sqrt(x))/(b^3*c^2*x^5 + 2*b 
^4*c*x^3 + b^5*x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {x^{9/2}}{\left (b x^2+c x^4\right )^3} \, dx=\text {Timed out} \] Input:

integrate(x**(9/2)/(c*x**4+b*x**2)**3,x)
 

Output:

Timed out
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 230, normalized size of antiderivative = 1.16 \[ \int \frac {x^{9/2}}{\left (b x^2+c x^4\right )^3} \, dx=-\frac {45 \, c^{2} x^{4} + 81 \, b c x^{2} + 32 \, b^{2}}{16 \, {\left (b^{3} c^{2} x^{\frac {9}{2}} + 2 \, b^{4} c x^{\frac {5}{2}} + b^{5} \sqrt {x}\right )}} - \frac {45 \, c {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} + 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{\sqrt {\sqrt {b} \sqrt {c}} \sqrt {c}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} - 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{\sqrt {\sqrt {b} \sqrt {c}} \sqrt {c}} - \frac {\sqrt {2} \log \left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{b^{\frac {1}{4}} c^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{b^{\frac {1}{4}} c^{\frac {3}{4}}}\right )}}{128 \, b^{3}} \] Input:

integrate(x^(9/2)/(c*x^4+b*x^2)^3,x, algorithm="maxima")
 

Output:

-1/16*(45*c^2*x^4 + 81*b*c*x^2 + 32*b^2)/(b^3*c^2*x^(9/2) + 2*b^4*c*x^(5/2 
) + b^5*sqrt(x)) - 45/128*c*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*b^(1/4) 
*c^(1/4) + 2*sqrt(c)*sqrt(x))/sqrt(sqrt(b)*sqrt(c)))/(sqrt(sqrt(b)*sqrt(c) 
)*sqrt(c)) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*b^(1/4)*c^(1/4) - 2*sq 
rt(c)*sqrt(x))/sqrt(sqrt(b)*sqrt(c)))/(sqrt(sqrt(b)*sqrt(c))*sqrt(c)) - sq 
rt(2)*log(sqrt(2)*b^(1/4)*c^(1/4)*sqrt(x) + sqrt(c)*x + sqrt(b))/(b^(1/4)* 
c^(3/4)) + sqrt(2)*log(-sqrt(2)*b^(1/4)*c^(1/4)*sqrt(x) + sqrt(c)*x + sqrt 
(b))/(b^(1/4)*c^(3/4)))/b^3
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 220, normalized size of antiderivative = 1.11 \[ \int \frac {x^{9/2}}{\left (b x^2+c x^4\right )^3} \, dx=-\frac {2}{b^{3} \sqrt {x}} - \frac {45 \, \sqrt {2} \left (b c^{3}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{64 \, b^{4} c^{2}} - \frac {45 \, \sqrt {2} \left (b c^{3}\right )^{\frac {3}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{64 \, b^{4} c^{2}} + \frac {45 \, \sqrt {2} \left (b c^{3}\right )^{\frac {3}{4}} \log \left (\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{128 \, b^{4} c^{2}} - \frac {45 \, \sqrt {2} \left (b c^{3}\right )^{\frac {3}{4}} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{128 \, b^{4} c^{2}} - \frac {13 \, c^{2} x^{\frac {7}{2}} + 17 \, b c x^{\frac {3}{2}}}{16 \, {\left (c x^{2} + b\right )}^{2} b^{3}} \] Input:

integrate(x^(9/2)/(c*x^4+b*x^2)^3,x, algorithm="giac")
 

Output:

-2/(b^3*sqrt(x)) - 45/64*sqrt(2)*(b*c^3)^(3/4)*arctan(1/2*sqrt(2)*(sqrt(2) 
*(b/c)^(1/4) + 2*sqrt(x))/(b/c)^(1/4))/(b^4*c^2) - 45/64*sqrt(2)*(b*c^3)^( 
3/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(b/c)^(1/4) - 2*sqrt(x))/(b/c)^(1/4))/(b 
^4*c^2) + 45/128*sqrt(2)*(b*c^3)^(3/4)*log(sqrt(2)*sqrt(x)*(b/c)^(1/4) + x 
 + sqrt(b/c))/(b^4*c^2) - 45/128*sqrt(2)*(b*c^3)^(3/4)*log(-sqrt(2)*sqrt(x 
)*(b/c)^(1/4) + x + sqrt(b/c))/(b^4*c^2) - 1/16*(13*c^2*x^(7/2) + 17*b*c*x 
^(3/2))/((c*x^2 + b)^2*b^3)
 

Mupad [B] (verification not implemented)

Time = 17.56 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.50 \[ \int \frac {x^{9/2}}{\left (b x^2+c x^4\right )^3} \, dx=\frac {45\,{\left (-c\right )}^{1/4}\,\mathrm {atanh}\left (\frac {{\left (-c\right )}^{1/4}\,\sqrt {x}}{b^{1/4}}\right )}{32\,b^{13/4}}-\frac {45\,{\left (-c\right )}^{1/4}\,\mathrm {atan}\left (\frac {{\left (-c\right )}^{1/4}\,\sqrt {x}}{b^{1/4}}\right )}{32\,b^{13/4}}-\frac {\frac {2}{b}+\frac {81\,c\,x^2}{16\,b^2}+\frac {45\,c^2\,x^4}{16\,b^3}}{b^2\,\sqrt {x}+c^2\,x^{9/2}+2\,b\,c\,x^{5/2}} \] Input:

int(x^(9/2)/(b*x^2 + c*x^4)^3,x)
 

Output:

(45*(-c)^(1/4)*atanh(((-c)^(1/4)*x^(1/2))/b^(1/4)))/(32*b^(13/4)) - (45*(- 
c)^(1/4)*atan(((-c)^(1/4)*x^(1/2))/b^(1/4)))/(32*b^(13/4)) - (2/b + (81*c* 
x^2)/(16*b^2) + (45*c^2*x^4)/(16*b^3))/(b^2*x^(1/2) + c^2*x^(9/2) + 2*b*c* 
x^(5/2))
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 506, normalized size of antiderivative = 2.56 \[ \int \frac {x^{9/2}}{\left (b x^2+c x^4\right )^3} \, dx =\text {Too large to display} \] Input:

int(x^(9/2)/(c*x^4+b*x^2)^3,x)
 

Output:

(90*sqrt(x)*c**(1/4)*b**(3/4)*sqrt(2)*atan((c**(1/4)*b**(1/4)*sqrt(2) - 2* 
sqrt(x)*sqrt(c))/(c**(1/4)*b**(1/4)*sqrt(2)))*b**2 + 180*sqrt(x)*c**(1/4)* 
b**(3/4)*sqrt(2)*atan((c**(1/4)*b**(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(c))/(c** 
(1/4)*b**(1/4)*sqrt(2)))*b*c*x**2 + 90*sqrt(x)*c**(1/4)*b**(3/4)*sqrt(2)*a 
tan((c**(1/4)*b**(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(c))/(c**(1/4)*b**(1/4)*sqr 
t(2)))*c**2*x**4 - 90*sqrt(x)*c**(1/4)*b**(3/4)*sqrt(2)*atan((c**(1/4)*b** 
(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(c))/(c**(1/4)*b**(1/4)*sqrt(2)))*b**2 - 180 
*sqrt(x)*c**(1/4)*b**(3/4)*sqrt(2)*atan((c**(1/4)*b**(1/4)*sqrt(2) + 2*sqr 
t(x)*sqrt(c))/(c**(1/4)*b**(1/4)*sqrt(2)))*b*c*x**2 - 90*sqrt(x)*c**(1/4)* 
b**(3/4)*sqrt(2)*atan((c**(1/4)*b**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(c))/(c** 
(1/4)*b**(1/4)*sqrt(2)))*c**2*x**4 - 45*sqrt(x)*c**(1/4)*b**(3/4)*sqrt(2)* 
log( - sqrt(x)*c**(1/4)*b**(1/4)*sqrt(2) + sqrt(b) + sqrt(c)*x)*b**2 - 90* 
sqrt(x)*c**(1/4)*b**(3/4)*sqrt(2)*log( - sqrt(x)*c**(1/4)*b**(1/4)*sqrt(2) 
 + sqrt(b) + sqrt(c)*x)*b*c*x**2 - 45*sqrt(x)*c**(1/4)*b**(3/4)*sqrt(2)*lo 
g( - sqrt(x)*c**(1/4)*b**(1/4)*sqrt(2) + sqrt(b) + sqrt(c)*x)*c**2*x**4 + 
45*sqrt(x)*c**(1/4)*b**(3/4)*sqrt(2)*log(sqrt(x)*c**(1/4)*b**(1/4)*sqrt(2) 
 + sqrt(b) + sqrt(c)*x)*b**2 + 90*sqrt(x)*c**(1/4)*b**(3/4)*sqrt(2)*log(sq 
rt(x)*c**(1/4)*b**(1/4)*sqrt(2) + sqrt(b) + sqrt(c)*x)*b*c*x**2 + 45*sqrt( 
x)*c**(1/4)*b**(3/4)*sqrt(2)*log(sqrt(x)*c**(1/4)*b**(1/4)*sqrt(2) + sqrt( 
b) + sqrt(c)*x)*c**2*x**4 - 256*b**3 - 648*b**2*c*x**2 - 360*b*c**2*x**...