\(\int \frac {(b x^2+c x^4)^{3/2}}{x^{9/2}} \, dx\) [246]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 286 \[ \int \frac {\left (b x^2+c x^4\right )^{3/2}}{x^{9/2}} \, dx=\frac {24 b \sqrt {c} x^{3/2} \left (b+c x^2\right )}{5 \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {b x^2+c x^4}}+\frac {12}{5} c \sqrt {x} \sqrt {b x^2+c x^4}-\frac {2 \left (b x^2+c x^4\right )^{3/2}}{x^{7/2}}-\frac {24 b^{5/4} \sqrt [4]{c} x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{5 \sqrt {b x^2+c x^4}}+\frac {12 b^{5/4} \sqrt [4]{c} x \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{5 \sqrt {b x^2+c x^4}} \] Output:

24/5*b*c^(1/2)*x^(3/2)*(c*x^2+b)/(b^(1/2)+c^(1/2)*x)/(c*x^4+b*x^2)^(1/2)+1 
2/5*c*x^(1/2)*(c*x^4+b*x^2)^(1/2)-2*(c*x^4+b*x^2)^(3/2)/x^(7/2)-24/5*b^(5/ 
4)*c^(1/4)*x*(b^(1/2)+c^(1/2)*x)*((c*x^2+b)/(b^(1/2)+c^(1/2)*x)^2)^(1/2)*E 
llipticE(sin(2*arctan(c^(1/4)*x^(1/2)/b^(1/4))),1/2*2^(1/2))/(c*x^4+b*x^2) 
^(1/2)+12/5*b^(5/4)*c^(1/4)*x*(b^(1/2)+c^(1/2)*x)*((c*x^2+b)/(b^(1/2)+c^(1 
/2)*x)^2)^(1/2)*InverseJacobiAM(2*arctan(c^(1/4)*x^(1/2)/b^(1/4)),1/2*2^(1 
/2))/(c*x^4+b*x^2)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.01 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.20 \[ \int \frac {\left (b x^2+c x^4\right )^{3/2}}{x^{9/2}} \, dx=-\frac {2 b \sqrt {x^2 \left (b+c x^2\right )} \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},-\frac {1}{4},\frac {3}{4},-\frac {c x^2}{b}\right )}{x^{3/2} \sqrt {1+\frac {c x^2}{b}}} \] Input:

Integrate[(b*x^2 + c*x^4)^(3/2)/x^(9/2),x]
 

Output:

(-2*b*Sqrt[x^2*(b + c*x^2)]*Hypergeometric2F1[-3/2, -1/4, 3/4, -((c*x^2)/b 
)])/(x^(3/2)*Sqrt[1 + (c*x^2)/b])
 

Rubi [A] (verified)

Time = 0.68 (sec) , antiderivative size = 298, normalized size of antiderivative = 1.04, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.381, Rules used = {1425, 1426, 1431, 266, 834, 27, 761, 1510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (b x^2+c x^4\right )^{3/2}}{x^{9/2}} \, dx\)

\(\Big \downarrow \) 1425

\(\displaystyle 6 c \int \frac {\sqrt {c x^4+b x^2}}{\sqrt {x}}dx-\frac {2 \left (b x^2+c x^4\right )^{3/2}}{x^{7/2}}\)

\(\Big \downarrow \) 1426

\(\displaystyle 6 c \left (\frac {2}{5} b \int \frac {x^{3/2}}{\sqrt {c x^4+b x^2}}dx+\frac {2}{5} \sqrt {x} \sqrt {b x^2+c x^4}\right )-\frac {2 \left (b x^2+c x^4\right )^{3/2}}{x^{7/2}}\)

\(\Big \downarrow \) 1431

\(\displaystyle 6 c \left (\frac {2 b x \sqrt {b+c x^2} \int \frac {\sqrt {x}}{\sqrt {c x^2+b}}dx}{5 \sqrt {b x^2+c x^4}}+\frac {2}{5} \sqrt {x} \sqrt {b x^2+c x^4}\right )-\frac {2 \left (b x^2+c x^4\right )^{3/2}}{x^{7/2}}\)

\(\Big \downarrow \) 266

\(\displaystyle 6 c \left (\frac {4 b x \sqrt {b+c x^2} \int \frac {x}{\sqrt {c x^2+b}}d\sqrt {x}}{5 \sqrt {b x^2+c x^4}}+\frac {2}{5} \sqrt {x} \sqrt {b x^2+c x^4}\right )-\frac {2 \left (b x^2+c x^4\right )^{3/2}}{x^{7/2}}\)

\(\Big \downarrow \) 834

\(\displaystyle 6 c \left (\frac {4 b x \sqrt {b+c x^2} \left (\frac {\sqrt {b} \int \frac {1}{\sqrt {c x^2+b}}d\sqrt {x}}{\sqrt {c}}-\frac {\sqrt {b} \int \frac {\sqrt {b}-\sqrt {c} x}{\sqrt {b} \sqrt {c x^2+b}}d\sqrt {x}}{\sqrt {c}}\right )}{5 \sqrt {b x^2+c x^4}}+\frac {2}{5} \sqrt {x} \sqrt {b x^2+c x^4}\right )-\frac {2 \left (b x^2+c x^4\right )^{3/2}}{x^{7/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle 6 c \left (\frac {4 b x \sqrt {b+c x^2} \left (\frac {\sqrt {b} \int \frac {1}{\sqrt {c x^2+b}}d\sqrt {x}}{\sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{\sqrt {c x^2+b}}d\sqrt {x}}{\sqrt {c}}\right )}{5 \sqrt {b x^2+c x^4}}+\frac {2}{5} \sqrt {x} \sqrt {b x^2+c x^4}\right )-\frac {2 \left (b x^2+c x^4\right )^{3/2}}{x^{7/2}}\)

\(\Big \downarrow \) 761

\(\displaystyle 6 c \left (\frac {4 b x \sqrt {b+c x^2} \left (\frac {\sqrt [4]{b} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{2 c^{3/4} \sqrt {b+c x^2}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{\sqrt {c x^2+b}}d\sqrt {x}}{\sqrt {c}}\right )}{5 \sqrt {b x^2+c x^4}}+\frac {2}{5} \sqrt {x} \sqrt {b x^2+c x^4}\right )-\frac {2 \left (b x^2+c x^4\right )^{3/2}}{x^{7/2}}\)

\(\Big \downarrow \) 1510

\(\displaystyle 6 c \left (\frac {4 b x \sqrt {b+c x^2} \left (\frac {\sqrt [4]{b} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right ),\frac {1}{2}\right )}{2 c^{3/4} \sqrt {b+c x^2}}-\frac {\frac {\sqrt [4]{b} \left (\sqrt {b}+\sqrt {c} x\right ) \sqrt {\frac {b+c x^2}{\left (\sqrt {b}+\sqrt {c} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )|\frac {1}{2}\right )}{\sqrt [4]{c} \sqrt {b+c x^2}}-\frac {\sqrt {x} \sqrt {b+c x^2}}{\sqrt {b}+\sqrt {c} x}}{\sqrt {c}}\right )}{5 \sqrt {b x^2+c x^4}}+\frac {2}{5} \sqrt {x} \sqrt {b x^2+c x^4}\right )-\frac {2 \left (b x^2+c x^4\right )^{3/2}}{x^{7/2}}\)

Input:

Int[(b*x^2 + c*x^4)^(3/2)/x^(9/2),x]
 

Output:

(-2*(b*x^2 + c*x^4)^(3/2))/x^(7/2) + 6*c*((2*Sqrt[x]*Sqrt[b*x^2 + c*x^4])/ 
5 + (4*b*x*Sqrt[b + c*x^2]*(-((-((Sqrt[x]*Sqrt[b + c*x^2])/(Sqrt[b] + Sqrt 
[c]*x)) + (b^(1/4)*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(Sqrt[b] + Sqrt[ 
c]*x)^2]*EllipticE[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)], 1/2])/(c^(1/4)*Sqr 
t[b + c*x^2]))/Sqrt[c]) + (b^(1/4)*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/ 
(Sqrt[b] + Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)], 1/ 
2])/(2*c^(3/4)*Sqrt[b + c*x^2])))/(5*Sqrt[b*x^2 + c*x^4]))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 834
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, S 
imp[1/q   Int[1/Sqrt[a + b*x^4], x], x] - Simp[1/q   Int[(1 - q*x^2)/Sqrt[a 
 + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1425
Int[((d_.)*(x_))^(m_)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp 
[(d*x)^(m + 1)*((b*x^2 + c*x^4)^p/(d*(m + 2*p + 1))), x] - Simp[2*c*(p/(d^4 
*(m + 2*p + 1)))   Int[(d*x)^(m + 4)*(b*x^2 + c*x^4)^(p - 1), x], x] /; Fre 
eQ[{b, c, d, m, p}, x] &&  !IntegerQ[p] && GtQ[p, 0] && LtQ[m + 2*p + 1, 0]
 

rule 1426
Int[((d_.)*(x_))^(m_)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp 
[(d*x)^(m + 1)*((b*x^2 + c*x^4)^p/(d*(m + 4*p + 1))), x] + Simp[2*b*(p/(d^2 
*(m + 4*p + 1)))   Int[(d*x)^(m + 2)*(b*x^2 + c*x^4)^(p - 1), x], x] /; Fre 
eQ[{b, c, d, m, p}, x] &&  !IntegerQ[p] && GtQ[p, 0] && NeQ[m + 4*p + 1, 0]
 

rule 1431
Int[((d_.)*(x_))^(m_)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp 
[(b*x^2 + c*x^4)^p/((d*x)^(2*p)*(b + c*x^2)^p)   Int[(d*x)^(m + 2*p)*(b + c 
*x^2)^p, x], x] /; FreeQ[{b, c, d, m, p}, x] &&  !IntegerQ[p]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 
Maple [A] (verified)

Time = 0.68 (sec) , antiderivative size = 216, normalized size of antiderivative = 0.76

method result size
default \(\frac {2 \left (c \,x^{4}+b \,x^{2}\right )^{\frac {3}{2}} \left (12 b^{2} \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {c x}{\sqrt {-b c}}}\, \operatorname {EllipticE}\left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )-6 b^{2} \sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {2}\, \sqrt {\frac {-c x +\sqrt {-b c}}{\sqrt {-b c}}}\, \sqrt {-\frac {c x}{\sqrt {-b c}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {c x +\sqrt {-b c}}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )+c^{2} x^{4}-4 b c \,x^{2}-5 b^{2}\right )}{5 x^{\frac {7}{2}} \left (c \,x^{2}+b \right )^{2}}\) \(216\)
risch \(-\frac {2 \left (-c \,x^{2}+5 b \right ) \sqrt {x^{2} \left (c \,x^{2}+b \right )}}{5 x^{\frac {3}{2}}}+\frac {12 b \sqrt {-b c}\, \sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}\, \sqrt {-\frac {c x}{\sqrt {-b c}}}\, \left (-\frac {2 \sqrt {-b c}\, \operatorname {EllipticE}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )}{c}+\frac {\sqrt {-b c}\, \operatorname {EllipticF}\left (\sqrt {\frac {\left (x +\frac {\sqrt {-b c}}{c}\right ) c}{\sqrt {-b c}}}, \frac {\sqrt {2}}{2}\right )}{c}\right ) \sqrt {x^{2} \left (c \,x^{2}+b \right )}\, \sqrt {x \left (c \,x^{2}+b \right )}}{5 \sqrt {c \,x^{3}+b x}\, x^{\frac {3}{2}} \left (c \,x^{2}+b \right )}\) \(222\)

Input:

int((c*x^4+b*x^2)^(3/2)/x^(9/2),x,method=_RETURNVERBOSE)
 

Output:

2/5*(c*x^4+b*x^2)^(3/2)/x^(7/2)/(c*x^2+b)^2*(12*b^2*((c*x+(-b*c)^(1/2))/(- 
b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(-c/(-b 
*c)^(1/2)*x)^(1/2)*EllipticE(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2 
^(1/2))-6*b^2*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c 
)^(1/2))/(-b*c)^(1/2))^(1/2)*(-c/(-b*c)^(1/2)*x)^(1/2)*EllipticF(((c*x+(-b 
*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))+c^2*x^4-4*b*c*x^2-5*b^2)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.21 \[ \int \frac {\left (b x^2+c x^4\right )^{3/2}}{x^{9/2}} \, dx=-\frac {2 \, {\left (12 \, b \sqrt {c} x^{2} {\rm weierstrassZeta}\left (-\frac {4 \, b}{c}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, b}{c}, 0, x\right )\right ) - \sqrt {c x^{4} + b x^{2}} {\left (c x^{2} - 5 \, b\right )} \sqrt {x}\right )}}{5 \, x^{2}} \] Input:

integrate((c*x^4+b*x^2)^(3/2)/x^(9/2),x, algorithm="fricas")
 

Output:

-2/5*(12*b*sqrt(c)*x^2*weierstrassZeta(-4*b/c, 0, weierstrassPInverse(-4*b 
/c, 0, x)) - sqrt(c*x^4 + b*x^2)*(c*x^2 - 5*b)*sqrt(x))/x^2
 

Sympy [F]

\[ \int \frac {\left (b x^2+c x^4\right )^{3/2}}{x^{9/2}} \, dx=\int \frac {\left (x^{2} \left (b + c x^{2}\right )\right )^{\frac {3}{2}}}{x^{\frac {9}{2}}}\, dx \] Input:

integrate((c*x**4+b*x**2)**(3/2)/x**(9/2),x)
 

Output:

Integral((x**2*(b + c*x**2))**(3/2)/x**(9/2), x)
 

Maxima [F]

\[ \int \frac {\left (b x^2+c x^4\right )^{3/2}}{x^{9/2}} \, dx=\int { \frac {{\left (c x^{4} + b x^{2}\right )}^{\frac {3}{2}}}{x^{\frac {9}{2}}} \,d x } \] Input:

integrate((c*x^4+b*x^2)^(3/2)/x^(9/2),x, algorithm="maxima")
 

Output:

integrate((c*x^4 + b*x^2)^(3/2)/x^(9/2), x)
 

Giac [F]

\[ \int \frac {\left (b x^2+c x^4\right )^{3/2}}{x^{9/2}} \, dx=\int { \frac {{\left (c x^{4} + b x^{2}\right )}^{\frac {3}{2}}}{x^{\frac {9}{2}}} \,d x } \] Input:

integrate((c*x^4+b*x^2)^(3/2)/x^(9/2),x, algorithm="giac")
 

Output:

integrate((c*x^4 + b*x^2)^(3/2)/x^(9/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (b x^2+c x^4\right )^{3/2}}{x^{9/2}} \, dx=\int \frac {{\left (c\,x^4+b\,x^2\right )}^{3/2}}{x^{9/2}} \,d x \] Input:

int((b*x^2 + c*x^4)^(3/2)/x^(9/2),x)
                                                                                    
                                                                                    
 

Output:

int((b*x^2 + c*x^4)^(3/2)/x^(9/2), x)
 

Reduce [F]

\[ \int \frac {\left (b x^2+c x^4\right )^{3/2}}{x^{9/2}} \, dx=\frac {\frac {14 \sqrt {c \,x^{2}+b}\, b}{5}+\frac {2 \sqrt {c \,x^{2}+b}\, c \,x^{2}}{5}+\frac {12 \sqrt {x}\, \left (\int \frac {\sqrt {x}\, \sqrt {c \,x^{2}+b}}{c \,x^{4}+b \,x^{2}}d x \right ) b^{2}}{5}}{\sqrt {x}} \] Input:

int((c*x^4+b*x^2)^(3/2)/x^(9/2),x)
 

Output:

(2*(7*sqrt(b + c*x**2)*b + sqrt(b + c*x**2)*c*x**2 + 6*sqrt(x)*int((sqrt(x 
)*sqrt(b + c*x**2))/(b*x**2 + c*x**4),x)*b**2))/(5*sqrt(x))